888 research outputs found
Lorentz violation in neutron and allowed nuclear beta decay
We explore the possibility that the weak interaction violates Lorentz, and in
particular rotational, invariance in neutron and allowed nuclear beta decay. A
broad class of Lorentz-violating effects is considered, in which the standard
propagator of the W-boson acquires an additional Lorentz-violating tensor. The
general decay rate for allowed beta decay that incorporates such a modified
propagator is derived. The resulting Lorentz-violating signals are discussed
for the different types of beta-decay transitions, Fermi, Gamow-Teller, and
mixed. We study the implications of our formalism for dedicated beta-decay
experiments. We give a short overview of the few relevant experiments that have
been performed or are ongoing.Comment: 23 pages; added reference
Nuclear beta decay with Lorentz violation
We consider the possibility of Lorentz-invariance violation in weak-decay
processes. We present a general approach that entails modifying the W-boson
propagator by adding a Lorentz-violating tensor to it. We describe the effects
of Lorentz violation on nuclear beta decay in this scenario. In particular we
show the expression for a first-forbidden transition with a spin change of two.
Using data from an old experiment on the rotational invariance of yttrium-90,
we derive several bounds on the Lorentz-violating parameters of the order of
10^(-6)-10^(-8).Comment: 4 pages; presented at the Sixth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 17-21, 2013; Added reference
Symmetry violations in nuclear and neutron decay
The role of decay as a low-energy probe of physics beyond the
Standard Model is reviewed. Traditional searches for deviations from the
Standard Model structure of the weak interaction in decay are discussed
in the light of constraints from the LHC and the neutrino mass. Limits on the
violation of time-reversal symmetry in decay are compared to the strong
constraints from electric dipole moments. Novel searches for Lorentz symmetry
breaking in the weak interaction in decay are also included, where we
discuss the unique sensitivity of decay to test Lorentz invariance. We
end with a roadmap for future -decay experiments.Comment: Accepted for publication in Rev. Mod. Phys. 86 pages, 13 figure
Testing Lorentz invariance in orbital electron capture
Searches for Lorentz violation were recently extended to the weak sector, in
particular neutron and nuclear decay [1]. From experiments on forbidden
-decay transitions strong limits in the range of -
were obtained on Lorentz-violating components of the -boson propagator [2].
In order to improve on these limits strong sources have to be considered. In
this Brief Report we study isotopes that undergo orbital electron capture and
allow experiments at high decay rates and low dose. We derive the expressions
for the Lorentz-violating differential decay rate and discuss the options for
competitive experiments and their required precision.Comment: accepted for publication as a Brief Report in Physical Review
Limits on Lorentz violation in neutral-Kaon decay
The KLOE collaboration recently reported bounds on the directional dependence
of the lifetime of the short-lived neutral kaon K_S with respect to the cosmic
microwave background dipole anisotropy. We interpret their results in a general
framework developed to probe Lorentz violation in the weak interaction. In this
approach a Lorentz-violating tensor \chi_{\mu\nu} is added to the standard
propagator of the W boson. We derive the K_S decay rate in a naive tree-level
model and calculate the asymmetry for the lifetime. By using the KLOE data the
real vector part of \chi_{\mu\nu} is found to be smaller than 10^-2. We briefly
discuss the theoretical challenges concerning nonleptonic decays.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 17-21, 2013
Radium single-ion optical clock
We explore the potential of the electric quadrupole transitions
- , in radium isotopes as
single-ion optical frequency standards. The frequency shifts of the clock
transitions due to external fields and the corresponding uncertainties are
calculated. Several competitive Ra candidates with 223 - 229 are
identified. In particular, we show that the transition
- at 828 nm in
Ra, with no linear Zeeman and electric quadrupole shifts, stands
out as a relatively simple case, which could be exploited as a compact, robust,
and low-cost atomic clock operating at a fractional frequency uncertainty of
. With more experimental effort, the Ra clocks
could be pushed to a projected performance reaching the level.Comment: 20 pages, 1 figur
Thermal bremsstrahlung probing the thermodynamical state of multifragmenting systems
Inclusive and exclusive hard-photon (E 30 MeV) production in five
different heavy-ion reactions (Ar+Au, Ag, Ni,
C at 60{\it A} MeV and Xe+Sn at 50{\it A} MeV) has been
studied coupling the TAPS photon spectrometer with several charged-particle
multidetectors covering more than 80% of 4. The measured spectra, slope
parameters and source velocities as well as their target-dependence, confirm
the existence of thermal bremsstrahlung emission from secondary nucleon-nucleon
collisions that accounts for roughly 20% of the total hard-photon yield. The
thermal slopes are a direct measure of the temperature of the excited nuclear
systems produced during the reaction.Comment: 4 pages, 3 figures, Proceedings CRIS 2000, 3rd Catania Relativistic
Ion Studies, "Phase Transitions in Strong Interactions: Status and
Perspectives", Acicastello, Italy, May 22-26, 2000 (to be published in Nuc.
Phys. A
On-line Excited-State Laser Spectroscopy of Trapped Short-Lived Ra Ions
As an important step towards an atomic parity violation experiment in one
single trapped Ra ion, laser spectroscopy experiments were performed with
on-line produced short-lived Ra ions. The isotope shift of
the D\,-\,P and
D\,-\,P transitions and the hyperfine structure
constant of the S and D states in Ra
were measured. These values provide a benchmark for the required atomic theory.
A lower limit of ms for the lifetime of the metastable
D state was measured by optical shelving.Comment: 4.2 pages, 6 figures, 2 tables
First Test of Lorentz Invariance in the Weak Decay of Polarized Nuclei
A new test of Lorentz invariance in the weak interactions has been made by
searching for variations in the decay rate of spin-polarized 20Na nuclei. This
test is unique to Gamow-Teller transitions, as was shown in the framework of a
recently developed theory that assumes a Lorentz symmetry breaking background
field of tensor nature. The nuclear spins were polarized in the up and down
direction, putting a limit on the amplitude of sidereal variations of the form
|(\Gamma_{up} - \Gamma_{down})| / (\Gamma_{up} + \Gamma_{down}) < 3 * 10^{-3}.
This measurement shows a possible route toward a more detailed testing of
Lorentz symmetry in weak interactions.Comment: 11 pages, 6 figure
Measurement of the half-life of the T= mirror decay of Ne and its implication on physics beyond the standard model
The superallowed mixed mirror decay
of Ne to F is excellently suited for high precision studies of
the weak interaction. However, there is some disagreement on the value of the
half-life. In a new measurement we have determined this quantity to be
= s, which differs
from the previous world average by 3 standard deviations. The impact of this
measurement on limits for physics beyond the standard model such as the
presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl
- …
