37 research outputs found
Observation of Large Atomic-Recoil Induced Asymmetries in Cold Atom Spectroscopy
The atomic recoil effect leads to large (25 %) asymmetries in simple
spectroscopic investigations of Ca atoms that have been laser-cooled to 10
microkelvin. Starting with spectra from the more familiar Doppler-broadened
domain, we show how the fundamental asymmetry between absorption and stimulated
emission of light manifests itself when shorter spectroscopic pulses lead to
the Fourier transform regime. These effects occur on frequency scales much
larger than the size of the recoil shift itself, and have not been observed
before in saturation spectroscopy. These results are relevant to
state-of-the-art optical atomic clocks based on freely expanding neutral atoms.Comment: 4 pages, 3 figure
Study of coupled states for the (4s^{2})^{1}S + (4s4p)^{3}P asymptote of Ca_{2}
The coupled states A^{1}\Sigma_{u}^{+} (^{1}D +}1}S), c^{3}\Pi_{u} (^{3}P +
^{1}S) and a^{3}\Sigma_{u}^{+} (^{3}P +}1}S) of the calcium dimer are
investigated in a laser induced fluorescence experiment combined with
high-resolution Fourier-transform spectroscopy. A global deperturbation
analysis of the observed levels, considering a model, which is complete within
the subspace of relevant neighboring states, is performed using the Fourier
Grid Hamiltonian method. We determine the potential energy curve of the
A^{1}\Sigma_{u}^{+} and c^{3}\Pi_{u} states and the strengths of the couplings
between them. The c^{3}\Pi_{u} and \as states are of particular importance for
the description of collisional processes between calcium atoms in the ground
state ^{1}S_{0} and excited state ^{3}P_{1} applied in studies for establishing
an optical frequency standard with Ca.Comment: 15 pages, 12 figure
The theory of quantum levitators
We develop a unified theory for clocks and gravimeters using the
interferences of multiple atomic waves put in levitation by traveling light
pulses. Inspired by optical methods, we exhibit a propagation invariant, which
enables to derive analytically the wave function of the sample scattering on
the light pulse sequence. A complete characterization of the device sensitivity
with respect to frequency or to acceleration measurements is obtained. These
results agree with previous numerical simulations and confirm the conjecture of
sensitivity improvement through multiple atomic wave interferences. A realistic
experimental implementation for such clock architecture is discussed.Comment: 11 pages, 6 Figures. Minor typos corrected. Final versio
Doppler cooling and trapping on forbidden transitions
Ultracold atoms at temperatures close to the recoil limit have been achieved
by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms
has been cooled and trapped to a temperature as low as 6 \mu K by operating a
magneto-optical trap on the spin-forbidden intercombination transition.
Quenching the long-lived excited state with an additional laser enhanced the
scattering rate by a factor of 15, while a high selectivity in velocity was
preserved. With this method more than 10% of pre-cooled atoms from a standard
magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo
simulations of the cooling process are in good agreement with the experiments
Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards
We present a simple method to stabilize the optical path length of an optical
fiber to an accuracy of about 1/100 of the laser wavelength. We study the
dynamic response of the path length to modulation of an electrically conductive
heater layer of the fiber. The path length is measured against the laser
wavelength by use of the Pound-Drever-Hall method; negative feedback is applied
via the heater. We apply the method in the context of a cryogenic resonator
frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure
Photoassociation spectroscopy of cold calcium atoms
Photoassociation spectroscopy experiments on 40Ca atoms close to the
dissociation limit 4s4s 1S0 - 4s4p 1P1 are presented. The vibronic spectrum was
measured for detunings of the photoassociation laser ranging from 0.6 GHz to 68
GHz with respect to the atomic resonance. In contrast to previous measurements
the rotational splitting of the vibrational lines was fully resolved. Full
quantum mechanical numerical simulations of the photoassociation spectrum were
performed which allowed us to put constraints on the possible range of the
calcium scattering length to between 50 a_0 and 300 a_0
Theory and applications of atomic and ionic polarizabilities
Atomic polarization phenomena impinge upon a number of areas and processes in
physics. The dielectric constant and refractive index of any gas are examples
of macroscopic properties that are largely determined by the dipole
polarizability. When it comes to microscopic phenomena, the existence of
alkaline-earth anions and the recently discovered ability of positrons to bind
to many atoms are predominantly due to the polarization interaction. An
imperfect knowledge of atomic polarizabilities is presently looming as the
largest source of uncertainty in the new generation of optical frequency
standards. Accurate polarizabilities for the group I and II atoms and ions of
the periodic table have recently become available by a variety of techniques.
These include refined many-body perturbation theory and coupled-cluster
calculations sometimes combined with precise experimental data for selected
transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index
measurements in microwave cavities, ab initio calculations of atomic structures
using explicitly correlated wave functions, interferometry with atom beams, and
velocity changes of laser cooled atoms induced by an electric field. This
review examines existing theoretical methods of determining atomic and ionic
polarizabilities, and discusses their relevance to various applications with
particular emphasis on cold-atom physics and the metrology of atomic frequency
standards.Comment: Review paper, 44 page
Coherence of Spin-Polarized Fermions Interacting with a Clock Laser in a Stark-Shift-Free Optical Lattice
We investigated the coherence of spin-polarized ^{87}Sr atoms trapped in a
light-shift-free one-dimensional optical lattice during their interaction with
a clock laser on the ^1S_0-^3P_0 transition. Collapses and revivals appeared
for more than 50 Rabi cycles, attributed to the thermal distribution of
discrete vibrational states in the lattice potential. The population
oscillation in the clock states lasted more than 1s, demonstrating high
immunity from decoherence. This long atomic coherence suggests the feasibility
of Pauli blocking of collisions in optical clock excitation.Comment: 10 pages, 4 figure
Remote frequency measurement of the 1S0-3P1 transition in laser cooled Mg-24
We perform Ramsey-Bord\'e spectroscopy on laser-cooled magnesium atoms in
free fall to measure the 1S0 \rightarrow 3P1 intercombination transition
frequency. The measured value of 655 659 923 839 730 (48) Hz is consistent with
our former atomic beam measurement (Friebe et al 2008 Phys. Rev. A 78 033830).
We improve upon the fractional accuracy of the previous measurement by more
than an order of magnitude to 7e-14. The magnesium frequency standard was
referenced to a fountain clock of the Physikalisch-Technische Bundesanstalt
(PTB) via a phase-stabilized telecom fiber link and its stability was
characterized for interrogation times up to 8000 s. The high temperature of the
atomic ensemble leads to a systematic shift due to the motion of atoms across
the spectroscopy beams. In our regime, this leads to a counterintuitive
reduction of residual Doppler shift with increasing resolution. Our theoretical
model of the atom-light interaction is in agreement with the observed effect
and allows us to quantify its contribution in the uncertainty budget.Comment: 16 pages, 8 figures. Accepted in New Journal of Physic