2,506 research outputs found

    Two ~35 day clocks in Her X-1: evidence for neutron star free precession

    Full text link
    We present evidence for the existence of two ~35 day clocks in the Her X-1/HZ Her binary system. ~35 day modulations are observed 1) in the Turn-On cycles with two on- and two off-states, and 2) in the changing shape of the pulse profiles which re-appears regularly. The two ways of counting the 35 day cycles are generally in synchronization. This synchronization did apparently break down temporarily during the long Anomalous Low (AL3) which Her X-1 experienced in 1999/2000, in the sense that there must have been one extra Turn-On cycle. Our working hypothesis is that there are two clocks in the system, both with a period of about ~35 days: precession of the accretion disk (the less stable "Turn-On clock") and free precession of the neutron star (the more stable "Pulse profile clock"). We suggest that free precession of the neutron star is the master clock, and that the precession of the accretion disk is basically synchronized to that of the neutron star through a feed-back mechanism in the binary system. However, the Turn-On clock can slip against its master when the accretion disk has a very low inclination, as is observed to be the case during AL3. We take the apparent correlation between the histories of the Turn-Ons, of the Anomalous Lows and of the pulse period evolution, with a 5 yr quasi-periodicity, as evidence for strong physical interaction and feed-back between the major components in the system. We speculate that the 5 yr (10 yr) period is either due to a corresponding activity cycle of HZ Her or a natural ringing period of the physical system of coupled components. The question whether free precession really exists in neutron stars is of great importance for the understanding of matter with supra-nuclear density.Comment: 6 pages, 5 figures, accepted for publication by A&

    Swift/BAT measurements of the cyclotron line energy decay in the accreting neutron star Her X-1: indication of an evolution of the magnetic field?

    Full text link
    Context: The magnetic field is a crucial ingredient of neutron stars. It governs the physics of accretion and of the resulting high-energy emission in accreting pulsars. Studies of the cyclotron resonant scattering features (CRSFs) seen as absorption lines in the X-ray spectra of the pulsars permit direct measuremets of the field strength. Aims: From an analysis of a number of pointed observations with different instruments, the energy of CRSF, Ecyc, has recently been found to decay in Her X-1, which is one of the best-studied accreting pulsars. We present our analysis of a homogeneous and almost uninterrupted monitoring of the line energy with Swift/BAT. Methods: We analyzed the archival Swift/BAT observations of Her X-1 from 2005 to 2014. The data were used to measure the CRSF energy averaged over several months. Results: The analysis confirms the long-term decay of the line energy. The downward trend is highly significant and consistent with the trend measured with the pointed observations: dEcyc/dt ~-0.3 keV per year. Conclusions: The decay of Ecyc either indicates a local evolution of the magnetic field structure in the polar regions of the neutron star or a geometrical displacement of the line-forming region due to long-term changes in the structure of the X-ray emitting region. The shortness of the observed timescale of the decay, -Ecyc/(dEcyc/dt) ~ 100 yr, suggests that trend reversals and/or jumps of the line energy might be observed in the future.Comment: Accepted for publication in Astronomy&Astrophysic

    Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE

    Get PDF
    The evolution of the particle background at an altitude of ~540 km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASA's Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by ~1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3 deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earth's magnetic field.Comment: 21 pages, 11 figures, accepted for publication in Earth and Planetary Science Letter

    Disappearing Pulses in Vela X-1

    Get PDF
    We present results from a 20 h RXTE observation of Vela X-1, ncluding a peculiar low state of a few hours duration, during which the pulsation of the X-ray emission ceased, while significant non-pulsed emission remained. This ``quiescent state'' was preceded by a ``normal state'' without any unusual signs and followed by a ``high state'' of several hours of increased activity with strong, flaring pulsations. while there is clear spectral evolution from the normal state to the low state, the spectra of the following high state are surprisingly similar to those of the low state.Comment: 5 pages, 5 figures, Proceedings of the 5th Compton Symposium, AIP, in pres

    Human Rights v. Extradition: The \u3cem\u3eSoering\u3c/em\u3e Case

    Get PDF
    The European Convention for the Protection of Human Rights and Fundamental Freedoms is widely regarded as the most dynamic and effective of the various international human rights instruments. Its impact on the judiciary of the twenty-three Western European Member States, as well as its pace-setting role for other international mechanisms for the protection of human rights, has recently been confirmed by the unanimous judgment of the European Court of Human Rights in Soering v. United Kingdom. In its judgment delivered on July 7, 1989, the Court held that the United Kingdom would act in violation of article 3 of the Convention if it extradited the applicant to the United States, since he would there be faced with the possibility of being sentenced to death and experiencing the death row phenomenon. Article 3 prohibits torture and inhuman or degrading treatment or punishment. The Soering judgment and the preceding report of the European Commission of Human Rights indicate, however, that other substantive and procedural guarantees in the European Convention may, under certain conditions, present obstacles to extradition

    A Clumpy Stellar Wind and Luminosity-Dependent Cyclotron Line Revealed by The First Suzaku Observation of the High-Mass X-ray Binary 4U 1538-522

    Get PDF
    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538-522. The broad-band spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0±0.423.0 \pm 0.4 keV and the iron Kα\alpha line at 6.426±0.0086.426 \pm 0.008 keV, as well as placing limits on the strengths of the iron Kβ\beta line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the lightcurve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα\alpha line intensity vary significantly with phase, with the iron line intensity significantly out-of-phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.Comment: 15 pages, 8 figures. Accepted to ApJ on 2 July 201

    Variable pulse profiles of Her X-1 repeating with the same irregular 35d clock as the turn-ons

    Full text link
    The accreting X-ray pulsar Her X-1 shows two types of long-term variations, both with periods of ~35 days: 1) Turn-on cycles, a modulation of the flux}, with a ten-day long Main-On and a five-day long Short-On, separated by two Off-states, and 2) a systematic variation in the shape of the 1.24 s pulse profile. While there is general consensus that the flux modulation is due to variable shading of the X-ray emitting regions on the surface of the neutron star by the precessing accretion disk, the physical reason for the variation in the pulse profiles has remained controversial. Following the suggestion that free precession of the neutron star may be responsible for the variation in the pulse profiles, we developed a physical model of strong feedback interaction between the neutron star and the accretion disk in order to explain the seemingly identical values for the periods of the two types of variations, which were found to be in basic synchronization. In a deep analysis of pulse profiles observed by several different satellites over the last three decades we now find that the clock behind the pulse profile variations shows exactly the same erratic behavior as the turn-on clock, even on short time scales (a few 35 d cycles), suggesting that there may in fact be only one 35 d clock in the system. If this is true, it raises serious questions with respect to the idea of free precession of the neutron star, namely how the neutron star can change its precessional period every few years by up to 2.5% and how the feedback can be so strong, such that these changes can be transmitted to the accretion disk on rather short time scales.Comment: 9 pages, 13 figures, accepted by Astronomy & Astrophysics. arXiv admin note: substantial text overlap with arXiv:1110.671
    corecore