48 research outputs found

    Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar core

    Full text link
    A search for any particular feature in any single solar neutrino dataset is unlikely to establish variability of the solar neutrino flux since the count rates are very low. It helps to combine datasets, and in this article we examine data from both the Homestake and GALLEX experiments. These show evidence of modulation with a frequency of 11.85 yr-1, which could be indicative of rotational modulation originating in the solar core. We find that precisely the same frequency is prominent in power spectrum analyses of the ACRIM irradiance data for both the Homestake and GALLEX time intervals. These results suggest that the solar core is inhomogeneous and rotates with sidereal frequency 12.85 yr-1. We find, by Monte Carlo calculations, that the probability that the neutrino data would by chance match the irradiance data in this way is only 2 parts in 10,000. This rotation rate is significantly lower than that of the inner radiative zone (13.97 yr-1) as recently inferred from analysis of Super-Kamiokande data, suggesting that there may be a second, inner tachocline separating the core from the radiative zone. This opens up the possibility that there may be an inner dynamo that could produce a strong internal magnetic field and a second solar cycle.Comment: 22 pages, 9 tables, 10 figure

    Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates

    Full text link
    Recent analyses of nuclear decay data show evidence of variations suggestive of a solar influence. Analyses of datasets acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both show evidence of an annual periodicity and of periodicities with sidereal frequencies in the neighborhood of 12.25 year^{-1} (at a significance level that we have estimated to be 10^{-17}). It is notable that this implied rotation rate is lower than that attributed to the solar radiative zone, suggestive of a slowly rotating solar core. This leads us to hypothesize that there may be an "inner tachocline" separating the core from the radiative zone, analogous to the "outer tachocline" that separates the radiative zone from the convection zone. The Rieger periodicity (which has a period of about 154 days, corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode oscillation with spherical-harmonic indices l=3, m=1, located in the outer tachocline. This suggests that we may test the hypothesis of a solar influence on nuclear decay rates by searching BNL and PTB data for evidence of a "Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The appropriate search band for such an oscillation is estimated to be 2.00-2.28 year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11 year^{-1}. We estimate that the probability of obtaining these results by chance is 10^{-12}.Comment: 12 pages, 6 figures, v2 has a color corrected Fig 6, a corrected reference, and a corrected typ

    Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation

    Full text link
    Evidence for an anomalous annual periodicity in certain nuclear decay data has led to speculation concerning a possible solar influence on nuclear processes. We have recently analyzed data concerning the decay rates of Cl-36 and Si-32, acquired at the Brookhaven National Laboratory (BNL), to search for evidence that might be indicative of a process involving solar rotation. Smoothing of the power spectrum by weighted-running-mean analysis leads to a significant peak at frequency 11.18/yr, which is lower than the equatorial synodic rotation rates of the convection and radiative zones. This article concerns measurements of the decay rates of Ra-226 acquired at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar (but not identical) analysis yields a significant peak in the PTB dataset at frequency 11.21/yr, and a peak in the BNL dataset at 11.25/yr. The change in the BNL result is not significant since the uncertainties in the BNL and PTB analyses are estimated to be 0.13/yr and 0.07/yr, respectively. Combining the two running means by forming the joint power statistic leads to a highly significant peak at frequency 11.23/yr. We comment briefly on the possible implications of these results for solar physics and for particle physics.Comment: 15 pages, 13 figure

    Solar cycle variations in the growth and decay of sunspot groups

    Full text link
    We analysed the combined Greenwich (1874-1976) and Solar Optical Observatories Network (1977-2011) data on sunspot groups. The daily rate of change of the area of a spot group is computed using the differences between the epochs of the spot group observation on any two consecutive days during its life-time and between the corrected whole spot areas of the spot group at these epochs. Positive/negative value of the daily rate of change of the area of a spot group represents the growth/decay rate of the spot group. We found that the total amounts of growth and decay of spot groups whose life times > or = 2 days in a given time interval (say one-year) well correlate to the amount of activity in the same interval. We have also found that there exists a reasonably good correlation and an approximate linear relationship between the logarithmic values of the decay rate and area of the spot group at the first day of the corresponding consecutive days, largely suggesting that a large/small area (magnetic flux) decreases in a faster/slower rate. There exists a long-term variation (about 90-year) in the slope of the linear relationship. The solar cycle variation in the decay of spot groups may have a strong relationship with the corresponding variations in solar energetic phenomena such as solar flare activity. The decay of spot groups may also substantially contribute to the coherence relationship between the total solar irradiance and the solar activity variations.Comment: 12 pages, 7 figures, Accepted for publication in Astrophysics & Space Science. arXiv admin note: substantial text overlap with arXiv:1105.106

    Coronal Magnetic Field Evolution from 1996 to 2012: Continuous Non-potential Simulations

    Get PDF
    Coupled flux transport and magneto-frictional simulations are extended to simulate the continuous magnetic-field evolution in the global solar corona for over 15 years, from the start of Solar Cycle 23 in 1996. By simplifying the dynamics, our model follows the build-up and transport of electric currents and free magnetic energy in the corona, offering an insight into the magnetic structure and topology that extrapolation-based models cannot. To enable these extended simulations, we have implemented a more efficient numerical grid, and have carefully calibrated the surface flux-transport model to reproduce the observed large-scale photospheric radial magnetic field, using emerging active regions determined from observed line-of-sight magnetograms. This calibration is described in some detail. In agreement with previous authors, we find that the standard flux-transport model is insufficient to simultaneously reproduce the observed polar fields and butterfly diagram during Cycle 23, and that additional effects must be added. For the best-fit model, we use automated techniques to detect the latitude–time profile of flux ropes and their ejections over the full solar cycle. Overall, flux ropes are more prevalent outside of active latitudes but those at active latitudes are more frequently ejected. Future possibilities for space-weather prediction with this approach are briefly assessed

    Solar Surface Magnetism and Irradiance on Time Scales from Days to the 11-Year Cycle

    Full text link
    corecore