4,428 research outputs found

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure

    Symmetry breaking due to Dzyaloshinsky-Moriya interactions in the kagome lattice

    Full text link
    Due to the particular geometry of the kagom\'e lattice, it is shown that antisymmetric Dzyaloshinsky-Moriya interactions are allowed and induce magnetic ordering. The symmetry of the obtained low temperature magnetic phases are studied through mean field approximation and classical Mont\'e Carlo simulations. A phase diagram relating the geometry of the interaction and the ordering temperature has been derived. The order of magnitude of the anisotropies due to Dzyaloshinsky-Moriya interactions are more important than in non-frustrated magnets, which enhances its appearance in real systems. Application to the jarosites compounds is proposed. In particular, the low temperature behaviors of the Fe and Cr-based jarosites are correctly described by this model.Comment: 6 (revtex4) twocolumn pages, 6 .eps figures. Submitted to Phys. Rev.

    Dzyaloshinsky-Moriya interaction in vesignieite: A route to freezing in a quantum kagome antiferromagnet

    Full text link
    We report an electron spin resonance investigation of the geometrically frustrated spin-1/2 kagome antiferromagnet vesignieite, BaCu3_3V2_2O8_8(OH)2_2. Analysis of the line widths and line shifts indicates the dominance of in-plane Dzyaloshinsky-Moriya anisotropy that is proposed to suppress strongly quantum spin fluctuations and thus to promote long-range ordering rather than a spin-liquid state. We also evidence an enhanced spin-phonon contribution that might originate from a lattice instability and discuss the origin of a low-temperature mismatch between intrinsic and bulk susceptibility in terms of local inhomogeneity

    Deterministic drift instability and stochastic thermal perturbations of magnetic dissipative droplet solitons

    Get PDF
    The magnetic dissipative droplet is a strongly nonlinear wave structure that can be stabilized in a thin film ferromagnet exhibiting perpendicular magnetic anisotropy by use of spin transfer torque. These structures have been observed experimentally at room temperature, showcasing their robustness against noise. Here, we quantify the effects of thermal noise by deriving stochastic equations of motion for a droplet based on soliton perturbation theory. First, it is found that deterministic droplets are linearly unstable at large bias currents, subject to a drift instability. When the droplet is linearly stable, our framework allows us to analytically compute the droplet's generation linewidth and center variance. Additionally, we study the influence of nonlocal and Oersted fields with micromagnetic simulations, providing insight into their effect on the generation linewidth. These results motivate detailed experiments on the current and temperature-dependent linewidth as well as drift instability statistics of droplets, which are important figures-of-merit in the prospect of droplet-based applications

    The Baldwin Effect and Black Hole Accretion: A Spectral Principal Component Analysis of a Complete QSO Sample

    Get PDF
    A unique set of UV-optical spectrograms of 22 low redshift QSOs are investigated using principal component analysis. We find three significant principal components over the broad wavelength range from Ly\alpha to H\alpha. They together account for about 78% of the sample intrinsic variance. We present strong arguments that the first principal component represents the Baldwin effect, relating equivalent widths to the luminosity (i.e. accretion rate), but only emission-line cores are involved. The second component represents continuum variations, probably dominated by intrinsic reddening. The third principal component directly relates QSO UV properties to the optical principal component 1 found by Boroson & Green (1992). It is the primary cause of scatter in the Baldwin relationships. It is also directly related to broad emission-line width and soft X-ray spectral index, and therefore probably driven by Eddington accretion ratio. We demonstrate how Baldwin relationships can be derived using our first principal component, virtually eliminating the scatter caused by the third principal component. This rekindles the hope that the Baldwin relationships can be used for cosmological study.Comment: 35 pages, 13 figures, AASTEX, accepted for publication in Ap

    Does Every Quasar Harbor A Blazar?

    Get PDF
    Assuming there is a blazar type continuum in every radio-loud quasar, we find that the free-free heating due to the beamed infrared continuum can greatly enhance collisionally excited lines, and thus explain the stronger CIV λ\lambda1549 line emission observed in radio loud quasars. We further predict that the CIV line should show variability {\it not} associated with observed continuum or Lyα\alpha variability.Comment: 15 pages, 3 figures; to appear in Astrophys. J. Let

    Aging in a topological spin glass

    Full text link
    We have examined the nonconventional spin glass phase of the 2-dimensional kagome antiferromagnet (H_3 O) Fe_3 (SO_4)_2 (OH)_6 by means of ac and dc magnetic measurements. The frequency dependence of the ac susceptibility peak is characteristic of a critical slowing down at Tg ~ 18K. At fixed temperature below Tg, aging effects are found which obey the same scaling law as in spin glasses or polymers. However, in clear contrast with conventional spin glasses, aging is remarkably insensitive to temperature changes. This particular type of dynamics is discussed in relation with theoretical predictions for highly frustrated non-disordered systems.Comment: 4 pages, 4 figure
    • 

    corecore