3,186 research outputs found

    Design specification for color coded spectral plots

    Get PDF
    There are no author-identified significant results in this report

    Design specification for LARSYS procedure 1

    Get PDF
    There are no author-identified significant results in this report

    Making training more cognitively effective: making videos interactive

    No full text
    The cost of health and safety (H&S) failures to the UK industry is currently estimated at up to £6.5 billion per annum, with the construction sector suffering unacceptably high levels of work-related incidents. Better H&S education across all skill levels in the industry is seen as an integral part of any solution. Traditional lecture-based courses often fail to recreate the dynamic realities of managing H&S on site and therefore do not sufficiently create deeper cognitive learning (which results in remembering and using what was learned). The use of videos is a move forward, but passively observing a video is not cognitively engaging and challenging, and therefore learning is not as effective as it can be. This paper describes the development of an interactive video in which learners take an active role. While observing the video, they are required to engage, participate, respond and be actively involved. The potential for this approach to be used in conjunction with more traditional approaches to H&S was explored using a group of 2nd-year undergraduate civil engineering students. The formative results suggested that the learning experience could be enhanced using interactive videos. Nevertheless, most of the learners believed that a blended approach would be most effective

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure

    Vesignieite: a S=12S = \frac{1}{2} kagome antiferromagnet with dominant third-neighbor exchange

    Get PDF
    The spin-12\frac{1}{2} kagome antiferromagnet is an archetypal frustrated system predicted to host a variety of exotic magnetic states. We show using neutron scattering measurements that deuterated vesignieite BaCu3_{3}V2_{2}O8_{8}(OD)2_{2}, a fully stoichiometric S=1/2S=1/2 kagome magnet with <<1% lattice distortion, orders magnetically at TN=9T_{\mathrm{N}}=9K into a multi-k coplanar variant of the predicted triple-k octahedral structure. We find this structure is stabilized by a dominant antiferromagnetic 3rd^{\mathrm{rd}}-neighbor exchange J3J_3 with minor 1st^{\mathrm{st}}- or 2nd^{\mathrm{nd}}--neighbour exchange. The spin-wave spectrum is well described by a J3J_3-only model including a tiny symmetric exchange anisotropy

    Are "EIT Waves" Fast-Mode MHD Waves?

    Full text link
    We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.Comment: to be published in the Astrophysical Journa

    Transient activation of human cytomegalovirus lytic gene expression during latency allows cytotoxic T cell killing of latently infected cells.

    Get PDF
    Human cytomegalovirus (HCMV) latency in the myeloid lineage is maintained by repressive histone modifications around the major immediate early promoter (MIEP), which results in inhibition of the lytic viral life cycle. We now show that pharmacological inhibition of histone deacetylases (HDACs) relieves this repression of the MIEP and induces transient expression of the viral lytic immediate early (IE) antigens but, importantly, not full virus reactivation. In turn, these latently infected cells now become targets for IE-specific cytotoxic T cells (CTLs) which are present at high frequency in all normal healthy HCMV positive carriers but would normally be unable to target latent (lytic antigen-negative) cells. This approach of transiently inducing viral lytic gene expression by HDAC inhibition, in otherwise latently infected cells, offers a window of opportunity to target and purge the latent myeloid cell reservoir by making these normally immunologically undetectable cells visible to pre-existing host immune responses to viral lytic antigens.This work was funded by a British Medical Research programme grant, grant number G0701279 and Wellcome Research Grant, grant number RG68483. This research was supported by the Cambridge NIHR BRC Cell Phenotyping Hub.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2467

    As-built design specification for EOD-LARSYS procedure 1

    Get PDF
    There are no author-identified significant results in this report
    corecore