8 research outputs found

    Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Get PDF
    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery

    Prostate Intrafraction Translation Margins for Real-Time Monitoring and Correction Strategies

    Get PDF
    The purpose of this work is to determine appropriate radiation therapy beam margins to account for intrafraction prostate translations for use with real-time electromagnetic position monitoring and correction strategies. Motion was measured continuously in 35 patients over 1157 fractions at 5 institutions. This data was studied using van Herk's formula of (αΣ + γσ') for situations ranging from no electromagnetic guidance to automated real-time corrections. Without electromagnetic guidance, margins of over 10 mm are necessary to ensure 95% dosimetric coverage while automated electromagnetic guidance allows the margins necessary for intrafraction translations to be reduced to submillimeter levels. Factors such as prostate deformation and rotation, which are not included in this analysis, will become the dominant concerns as margins are reduced. Continuous electromagnetic monitoring and automated correction have the potential to reduce prostate margins to 2-3 mm, while ensuring that a higher percentage of patients (99% versus 90%) receive a greater percentage (99% versus 95%) of the prescription dose

    Observations On Real-Time Prostate Gland Motion Using Electromagnetic Tracking

    No full text
    Purpose: To quantify and describe the real-time movement of the prostate gland in a large data set of patients treated with radiotherapy. Methods and Materials: The Calypso four-dimensional localization system was used for target localization in 17 patients, with electromagnetic markers implanted in the prostate of each patient. We analyzed a total of 550 continuous tracking sessions. The fraction of time that the prostate was displaced by \u3e3, \u3e5, \u3e7, and \u3e10 mm was calculated for each session and patient. The frequencies of displacements after initial patient positioning were analyzed over time. Results: Averaged over all patients, the prostate was displaced \u3e3 and \u3e5 mm for 13.6% and 3.3% of the total treatment time, respectively. For individual patients, the corresponding maximal values were 36.2% and 10.9%. For individual fractions, the corresponding maximal values were 98.7% and 98.6%. Displacements \u3e3 mm were observed at 5 min after initial alignment in about one-eighth of the observations, and increased to one-quarter by 10 min. For individual patients, the maximal value of the displacements \u3e3 mm at 5 and 10 min after initial positioning was 43% and 75%, respectively. Conclusion: On average, the prostate was displaced by \u3e3 mm and \u3e5 mm approximately 14% and 3% of the time, respectively. For individual patients, these values were up to three times greater. After the initial positioning, the likelihood of displacement of the prostate gland increased with elapsed time. This highlights the importance of initiating treatment shortly after initially positioning the patient. © 2008 Elsevier Inc. All rights reserved

    A Display Framework For Visualizing Real-Time 3D Lung Tumor Radiotherapy

    No full text
    Medical display systems are valuable tools in enabling the clinicians in the field of radiation therapy to view a patient\u27s multi-modal information and treatment plan details. The effectiveness of display systems is further improved by including computer-based visualization systems that deliver the content comprehensively. In this paper, we present a medical display and visualization framework for radiation therapy that couples a computer-based simulation of real-time lung tumor motion and its dose accumulation during treatment with an Augmented Reality Center (ARC) based display system. The simulation framework provides insights on the variations in the effectiveness of the lung therapy for changes in the patient\u27s breathing conditions. The display system aims to enhance the clinician\u27s understanding by enhancing the 3D depth perception of the dose accumulation in lung tumors. Thus the framework acts as a tool for presenting both pre-operative studies and intra-operative treatment efficacy analysis when coupled with a real-time respiration monitor. A first evaluation of this framework was carried out using six clinical experts. Results show that, using the ARC compared to a 2D monitor, the experts were able to more efficiently perceive the radiation dose delivered to various aspects of the moving tumor and the surrounding normal tissues, as well as more quickly detecting radiation hot spots that are critical to minimizing damage to healthy tissue. © 2008 IEEE

    Modeling Simulation And Visualization Of Conformal 3D Lung Tumor Dosimetry

    No full text
    Lung tumors move during breathing depending on the patient\u27s patho-physiological condition and orientation, thereby compromising the accurate deposition of the radiation dose during radiotherapy. In this paper, we present and validate a computer-based simulation framework to calculate the delivered dose to a 3D moving tumor and its surrounding normal tissues. The computer-based simulation framework models a 3D volumetric lung tumor and its surrounding tissues, simulates the tumor motion during a simulated dose delivery both as a self-reproducible motion and a random motion using the dose extracted from a treatment plan, and predicts the amount and location of radiation doses deposited. A radiation treatment plan of a small lung tumor (1-3 cm diameter) was developed in a commercial planning system (iPlan software, BrainLab, Munich, Germany) to simulate the radiation dose delivered. The dose for each radiation field was extracted from the software. The tumor motion was simulated for varying values of its rate, amplitude and direction within a single breath as well as from one breath to another. Such variations represent the variations in tumor motion induced by breathing variations. During the simulation of dose delivery, the dose on the target was summed to generate the real-time dose to the tumor for each beam independently. The simulation results show that the dose accumulated on the tumor varies significantly with both the tumor size and the tumor\u27s motion rate, amplitude and direction. For a given tumor motion rate, amplitude and direction, the smaller the tumor size the smaller is the percentage of the radiation dose accumulated. The simulation results are validated by comparing the center plane of the 3D tumor with 2D film dosimetry measurements using a programmable 4D motion phantom moving in a self-reproducible pattern. The results also show the real-time capability of the framework at 40 discrete tumor motion steps per breath, which is higher than the number of four-dimensional computed tomography (CT) steps (approximately 20) during a single breath. The real-time capability enables the framework to be coupled with real-time tumor monitoring systems such as implanted fiducials for computing the dose delivered in real time during the treatment. © 2009 Institute of Physics and Engineering in Medicine
    corecore