1,716 research outputs found

    Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex

    Get PDF
    Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution. © 2017 the Owner Societies.Multi valued and parallel molecular logi

    The Most Luminous z~9-10 Galaxy Candidates yet Found: The Luminosity Function, Cosmic Star-Formation Rate, and the First Mass Density Estimate at 500 Myr

    Full text link
    [abridged] We present the discovery of four surprisingly bright (H_160 ~ 26 - 27 mag AB) galaxy candidates at z~9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z~10 galaxy candidates that are known, just ~500 Myr after the Big Bang. Two similarly bright sources are also detected in a systematic re-analysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5-6.2sigma in the very deep Spitzer/IRAC 4.5 micron data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z=10.2+-0.4) is robustly detected also at 3.6 micron (6.9sigma), revealing a flat UV spectral energy distribution with a slope beta=-2.0+-0.2, consistent with demonstrated trends with luminosity at high redshift. The abundance of such luminous candidates suggests that the luminosity function evolves more significantly in phi_* than in L_* at z>~8 with a higher number density of bright sources than previously expected. Despite the discovery of these luminous candidates, the cosmic star formation rate density for galaxies with SFR >0.7 M_sun/yr shows an order-of-magnitude increase in only 170 Myr from z ~ 10 to z ~ 8, consistent with previous results. Based on the IRAC detections, we derive galaxy stellar masses at z~10, finding that these luminous objects are typically 10^9 M_sun. The cosmic stellar mass density at z~10 is log10 rho_* = 4.7^+0.5_-0.8 M_sun Mpc^-3 for galaxies brighter than M_UV~-18. The remarkable brightness, and hence luminosity, of these z~9-10 candidates highlights the opportunity for deep spectroscopy to determine their redshift and nature, demonstrates the value of additional search fields covering a wider area to understand star-formation in the very early universe, and highlights the opportunities for JWST to map the buildup of galaxies at redshifts much earlier than z~10.Comment: 20 pages, 12 figures, changed to match resubmitted version to Ap

    Spitzer/IRAC Observations of the Variability of Sgr A* and the Object G2 at 4.5 microns

    Get PDF
    We present the first detection from the Spitzer Space Telescope of 4.5 micron variability from Sgr A*, the emitting source associated with the Milky Way's central black hole. The >23 hour continuous light curve was obtained with the IRAC instrument in 2013 December. The result characterizes the variability of Sgr A* prior to the closest approach of the G2 object, a putative infalling gas cloud that orbits close to Sgr A*. The high stellar density at the location of Sgr A* produces a background of ~250 mJy at 4.5 microns in each pixel with a large pixel-to-pixel gradient, but the light curve for the highly variable Sgr A* source was successfully measured by modeling and removing the variations due to pointing wobble. The observed flux densities range from the noise level of ~0.7 mJy rms in a 6.4-s measurement to ~10 mJy. Emission was seen above the noise level ~34% of the time. The light curve characteristics, including the flux density distribution and structure function, are consistent with those previously derived at shorter infrared wavelengths. We see no evidence in the light curve for activity attributable to the G2 interaction at the observing epoch, ~100 days before the expected G2 periapsis passage. The IRAC light curve is more than a factor of two longer than any previous infrared observation, improving constraints on the timescale of the break in the power spectral distribution of Sgr A* flux densities. The data favor the longer of the two previously published values for the timescale.Comment: 13 pages, 10 figures, 2 tables, accepted for publication in the Ap

    Star formation in z>1 3CR host galaxies as seen by Herschel

    Get PDF
    We present Herschel (PACS and SPIRE) far-infrared (FIR) photometry of a complete sample of z>1 3CR sources, from the Herschel GT project The Herschel Legacy of distant radio-loud AGN (PI: Barthel). Combining these with existing Spitzer photometric data, we perform an infrared (IR) spectral energy distribution (SED) analysis of these landmark objects in extragalactic research to study the star formation in the hosts of some of the brightest active galactic nuclei (AGN) known at any epoch. Accounting for the contribution from an AGN-powered warm dust component to the IR SED, about 40% of our objects undergo episodes of prodigious, ULIRG-strength star formation, with rates of hundreds of solar masses per year, coeval with the growth of the central supermassive black hole. Median SEDs imply that the quasar and radio galaxy hosts have similar FIR properties, in agreement with the orientation-based unification for radio-loud AGN. The star-forming properties of the AGN hosts are similar to those of the general population of equally massive non-AGN galaxies at comparable redshifts, thus there is no strong evidence of universal quenching of star formation (negative feedback) within this sample. Massive galaxies at high redshift may be forming stars prodigiously, regardless of whether their supermassive black holes are accreting or not.Comment: 30 pages, 13 figures, 4 tables. Accepted for publication in A&

    AEGIS: Infrared Spectroscopy of An Infrared Luminous Lyman Break Galaxy at z=3.01

    Get PDF
    We report the detection of rest--frame 6.2 and 7.7 \micron emission features arising from Polycyclic Aromatic Hydrocarbons (PAH) in the Spitzer/IRS spectrum of an infrared-luminous Lyman break galaxy at z=3.01. This is currently the highest redshift galaxy where these PAH emission features have been detected. The total infrared luminosity inferred from the MIPS 24 \micron and radio flux density is 2×1013\times10^{13} L_{\odot}, which qualifies this object as a so--called hyperluminous infrared galaxy (HyLIRG). However, unlike local HyLIRGs which are generally associated with QSO/AGNs and have weak or absent PAH emission features, this HyLIRG has very strong 6.2 and 7.7 \micron PAH emission. We argue that intense star formation dominates the infrared emission of this source, although we cannot rule out the presence of a deeply obscured AGN. This LBG appears to be a distorted system in the HST ACS F606W and F814W images, possibly indicating that a significant merger or interaction is driving the large IR luminosity

    The M33 Variable Star Population Revealed by Spitzer

    Full text link
    We analyze five epochs of Spitzer Space Telescope/Infrared Array Camera (IRAC) observations of the nearby spiral galaxy M33. Each epoch covered nearly a square degree at 3.6, 4.5, and 8.0 microns. The point source catalog from the full dataset contains 37,650 stars. The stars have luminosities characteristic of the asymptotic giant branch and can be separated into oxygen-rich and carbon-rich populations by their [3.6] - [4.5] colors. The [3.6] - [8.0] colors indicate that over 80% of the stars detected at 8.0 microns have dust shells. Photometric comparison of epochs using conservative criteria yields a catalog of 2,923 variable stars. These variables are most likely long-period variables amidst an evolved stellar population. At least one-third of the identified carbon stars are variable.Comment: Accepted for publication in ApJ. See published article for full resolution figures and electronic table

    The IRAC Shallow Survey

    Full text link
    The IRAC shallow survey covers 8.5 square degrees in the NOAO Deep Wide-Field Survey in Bootes with 3 or more 30 second exposures per position. An overview of the survey design, reduction, calibration, star-galaxy separation, and initial results is provided. The survey includes approximately 370,000, 280,000, 38,000, and 34,000 sources brighter than the 5 sigma limits of 6.4, 8.8, 51, and 50 microJy at 3.6, 4.5, 5.8, and 8 microns respectively, including some with unusual spectral energy distributions.Comment: To appear in ApJS, Spitzer special issue. For full resolution see http://cfa-www.harvard.edu/irac/publication

    Deep mid-infrared observations of Lyman-break galaxies

    Full text link
    As part of the In-Orbit Checkout activities for the Spitzer Space Telescope, the IRAC team carried out a deep observation (average integration time ~8 hours) of a field surrounding the bright QSO HS 1700+6416. This field contains several hundred z~3 Lyman-break galaxy candidates, and we report here on their mid-infrared properties, including the IRAC detection rate, flux densities and colors, and the results of fitting population synthesis models to the optical, near-infrared, and IRAC magnitudes. The results of the model-fitting show that previous optical/near-infrared studies of LBGs were not missing large, hidden old stellar populations. The LBG candidates' properties are consistent with those of massive, star-forming galaxies at z~3. Other IRAC sources in the same field have similar properties, so IRAC selection may prove a promising method of finding additional high-redshift galaxies.Comment: ApJS in press (Spitzer special issue); 13 pages, 3 figure

    A Spatially Resolved Study of the Cold Dust in NGC 205

    Get PDF
    We present IRAC and MIPS observations of NGC 205, the dwarf elliptical companion of M31, obtained with the Spitzer Space Telescope. The extended dust emission is spatially concentrated in three main emission regions. Based on our mid-to-far infrared flux density measurements alone, we derive a total dust mass estimate of the order of 3.2 × 10^4 M_⊙, at a temperature of ~20K. The gas mass associated with this component matches the predicted mass returned by the dying stars from the last burst of star formation in NGC 205 (~0.5 Gyr ago). Analysis of the Spitzer data combined with previous 1.1mm observations over a small central region or “Core” (18" diameter), suggest the presence of very cold (T ~ 12K) dust and a dust mass 16 times higher than is estimated from the Spitzer measurements alone. Assuming a gas to dust mass ratio of 100, these two datasets, i.e. with and without the millimeter observations, suggest a total gas mass range of 3.2 × 10^6 to 5 × 10^7 M_⊙
    corecore