3 research outputs found

    Alternating North‐South Brightness Ratio of Ganymede's Auroral Ovals: Hubble Space Telescope Observations Around the Juno PJ34 Flyby

    Full text link
    peer reviewedWe report results of Hubble Space Telescope observations from Ganymede's orbitally trailing side which were taken around the flyby of the Juno spacecraft on 7 June 2021. We find that Ganymede's northern and southern auroral ovals alternate in brightness such that the oval facing Jupiter's magnetospheric plasma sheet is brighter than the other one. This suggests that the generator that powers Ganymede's aurora is the momentum of the Jovian plasma sheet north and south of Ganymede's magnetosphere. Magnetic coupling of Ganymede to the plasma sheet above and below the moon causes asymmetric magnetic stresses and electromagnetic energy fluxes ultimately powering the auroral acceleration process. No clear statistically significant timevariability of the auroral emission on short time scales of 100s could be resolved. We show that electron energy fluxes of several tens of mW m−2 are required for its OI 1,356 Å emission making Ganymede a very poor auroral emitter

    Brown dwarfs as ideal candidates for detecting UV aurora outside the Solar System: Hubble Space Telescope observations of 2MASS J1237+6526

    No full text
    Context. Observations of auroral emissions are powerful means to remotely sense the space plasma environment around planetary bodies and ultracool dwarfs. Therefore successful searches and characterization of aurorae outside the Solar System will open new avenues in the area of extrasolar space physics. Aims. We aim to demonstrate that brown dwarfs are ideal objects to search for UV aurora outside the Solar System. We specifically search for UV aurora on the late-type T6.5 brown dwarf 2MASS J12373919+6526148 (in the following 2MASS J1237+6526). Methods. Introducing a parameter referred to as auroral power potential, we derive scaling models for auroral powers for rotationally driven aurora applicable to a broad range of wavelengths. We also analyze Hubble Space Telescope observations obtained with the STIS camera at near-UV, far-UV, and Ly-alpha wavelengths of 2MASS J1237+6526. Results. We show that brown dwarfs, due to their typically strong surface magnetic fields and fast rotation, can produce auroral UV powers on the order of 10(19) watt or more. Considering their negligible thermal UV emission, their potentially powerful auroral emissions make brown dwarfs ideal candidates for detecting extrasolar aurorae. We find possible emission from 2MASS J1237+6526, but cannot conclusively attribute it to the brown dwarf due to low signal-to-noise values in combination with nonsystematic trends in the background fluxes. The observations provide upper limits for the emission at various UV wavelength bands. The upper limits for the emission correspond to a UV luminosity of similar to 1 x 10(19) watt, which lies in the range of the theoretically expected values. Conclusions. The possible auroral emission from the dwarf could be produced by a close-in companion and/or magnetospheric transport processes

    Alternating North‐South Brightness Ratio of Ganymede's Auroral Ovals: Hubble Space Telescope Observations Around the Juno PJ34 Flyby

    No full text
    We report results of Hubble Space Telescope observations from Ganymede's orbitally trailing side which were taken around the flyby of the Juno spacecraft on 7 June 2021. We find that Ganymede's northern and southern auroral ovals alternate in brightness such that the oval facing Jupiter's magnetospheric plasma sheet is brighter than the other one. This suggests that the generator that powers Ganymede's aurora is the momentum of the Jovian plasma sheet north and south of Ganymede's magnetosphere. Magnetic coupling of Ganymede to the plasma sheet above and below the moon causes asymmetric magnetic stresses and electromagnetic energy fluxes ultimately powering the auroral acceleration process. No clear statistically significant timevariability of the auroral emission on short time scales of 100s could be resolved. We show that electron energy fluxes of several tens of mW m−2 are required for its OI 1,356 Å emission making Ganymede a very poor auroral emitter.Plain Language Summary: Jupiter's moon Ganymede is the largest moon in the solar system and the only known moon with an intrinsic magnetic field and two auroral ovals around its north and south poles. Earth also possesses two auroral ovals, which are bands of emission around its poles. This emission is also referred to as northern and southern lights. We use the Hubble Space Telescope to observe Ganymede's aurora around the time when NASA's Juno spacecraft had a close flyby at Ganymede. We find that the brightness of the northern and southern ovals alternate in intensity with a period of 10 hr. Additionally, we derive that an energy flux of several tens of milli‐Watt per square meter is necessary to power the auroral emission. This energy flux comes from energetic electrons accelerated in the vicinity of Ganymede.Key Points: Hubble Space Telescope observations of Ganymede's orbitally trailing hemisphere on 7 June 2021 in support of Juno flyby. Brightness ratio of northern and southern auroral ovals oscillates such that the oval facing the Jovian plasma sheet is brighter. Oscillation suggests the aurora is driven by magnetic stresses coupling the moon's magnetic field to the surrounding Jovian plasma sheet.European Research Council, ERCNASAhttp://archive.stsci.edu/hst
    corecore