847 research outputs found

    Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite, Leo V

    Get PDF
    We present a chemodynamical analysis of the Leo~V dwarf galaxy, based on Keck II DEIMOS spectra of 8 member stars. We find a systemic velocity for the system of ⟨vr⟩=170.9−1.9+2.1\langle v_r\rangle = 170.9^{+ 2.1}_{-1.9}kms−1^{-1}, and barely resolve a velocity dispersion for the system, with σvr=2.3−1.6+3.2\sigma_{vr} = 2.3^{+3.2}_{-1.6}kms−1^{-1}, consistent with previous studies of Leo~V. The poorly resolved dispersion means we are unable to adequately constrain the dark matter content of Leo~V. We find an average metallicity for the dwarf of [Fe/H]=−2.48±0.21 = -2.48\pm0.21, and measure a significant spread in the iron abundance of its member stars, with −3.1≤-3.1\le[Fe/H]≤−1.9\le-1.9 dex, which cleanly identifies Leo~V as a dwarf galaxy that has been able to self-enrich its stellar population through extended star formation. Owing to the tentative photometric evidence for tidal substructure around Leo~V, we also investigate whether there is any evidence for tidal stripping or shocking of the system within its dynamics. We measure a significant velocity gradient across the system, of dvdχ=−4.1−2.6+2.8\frac{{\rm d}v}{{\rm d}\chi} = -4.1^{+2.8}_{-2.6}kms−1^{-1} per arcmin (or dvdχ=−71.9−45.6+50.8\frac{{\rm d}v}{{\rm d}\chi} = -71.9^{+50.8}_{-45.6}kms−1^{-1}~kpc−1^{-1}), which points almost directly toward the Galactic centre. We argue that Leo~V is likely a dwarf on the brink of dissolution, having just barely survived a past encounter with the centre of the Milky Way.Comment: 14 pages, 12 figures, accepted for publication in MNRAS. Updated to include minor revisions from referee proces

    Forming Disk Galaxies in Lambda CDM Simulations

    Full text link
    We used fully cosmological, high resolution N-body + SPH simulations to follow the formation of disk galaxies with rotational velocities between 135 and 270 km/sec in a Lambda CDM universe. The simulations include gas cooling, star formation, the effects of a uniform UV background and a physically motivated description of feedback from supernovae. The host dark matter halos have a spin and last major merger redshift typical of galaxy sized halos as measured in recent large scale N--Body simulations. The simulated galaxies form rotationally supported disks with realistic exponential scale lengths and fall on both the I-band and baryonic Tully Fisher relations. An extended stellar disk forms inside the Milky Way sized halo immediately after the last major merger. The combination of UV background and SN feedback drastically reduces the number of visible satellites orbiting inside a Milky Way sized halo, bringing it in fair agreement with observations. Our simulations predict that the average age of a primary galaxy's stellar population decreases with mass, because feedback delays star formation in less massive galaxies. Galaxies have stellar masses and current star formation rates as a function of total mass that are in good agreement with observational data. We discuss how both high mass and force resolution and a realistic description of star formation and feedback are important ingredients to match the observed properties of galaxies.Comment: Revised version after the referee's comments. Conclusions unchanged. 2 new plots. MNRAS in press. 20 plots. 21 page

    A Search for Variable Stars and Planetary Occultations in NGC2301 I: Techniques

    Full text link
    We observed the young open cluster NGC 2301 for 14 nights in Feb. 2004 using the orthogonal transfer CCD camera (OPTIC). We used PSF shaping techniques ("square stars") during the observations allowing a larger dynamic range (4.5 magnitudes) of high photometric precision results (≤\le2 mmag) to be obtained. These results are better than similar observing campaigns using standard CCD imagers. This paper discusses our observational techniques and presents initial results for the variability statistics found in NGC 2301. Details of the variability statistics as functions of color, variability type, stellar type, and cluster location will appear in paper II

    Finite element modelling of liquid crystal devices and applications

    Get PDF

    A Deeper Look at the New Milky Way Satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III

    Full text link
    We present deep Magellan/Megacam stellar photometry of four recently discovered faint Milky Way satellites: Sagittarius II (Sgr II), Reticulum II (Ret II), Phoenix II (Phe II), and Tucana III (Tuc III). Our photometry reaches ~2-3 magnitudes deeper than the discovery data, allowing us to revisit the properties of these new objects (e.g., distance, structural properties, luminosity measurements, and signs of tidal disturbance). The satellite color-magnitude diagrams show that they are all old (~13.5 Gyr) and metal-poor ([Fe/H]≲−2.2\lesssim-2.2). Sgr II is particularly interesting as it sits in an intermediate position between the loci of dwarf galaxies and globular clusters in the size-luminosity plane. The ensemble of its structural parameters is more consistent with a globular cluster classification, indicating that Sgr II is the most extended globular cluster in its luminosity range. The other three satellites land directly on the locus defined by Milky Way ultra-faint dwarf galaxies of similar luminosity. Ret II is the most elongated nearby dwarf galaxy currently known for its luminosity range. Our structural parameters for Phe II and Tuc III suggest that they are both dwarf galaxies. Tuc III is known to be associated with a stellar stream, which is clearly visible in our matched-filter stellar density map. The other satellites do not show any clear evidence of tidal stripping in the form of extensions or distortions. Finally, we also use archival HI data to place limits on the gas content of each object.Comment: Accepted for publication in ApJ. Minor updates to match accepted versio

    Liquid crystal alignment induced by micron-scale patterned surfaces

    Get PDF
    Induced bulk orientation of nematic liquid crystal in contact with micron-scale patterned surfaces is investigated using the Landau-de Gennes theory by means of three-dimensional simulations. The effect of the size and spacing of square cross-sectional well and post patterns is investigated and shown to influence the orientation of the liquid crystal bulk, far removed from the surface. Additionally, the effective anchoring strength of the induced alignment is estimated using a modified version of the torque balance method. Both azimuthal and zenithal multistability are shown to exist within unique ranges of feature sizes
    • …
    corecore