78 research outputs found

    Fermi Surface of Alpha-Uranium at Ambient Pressure

    Full text link
    We have performed de Haas-van Alphen measurements of the Fermi surface of alpha-uranium single crystals at ambient pressure within the alpha-3 charge density wave (CDW) state from 0.020 K - 10 K and magnetic fields to 35 T using torque magnetometry. The angular dependence of the resulting frequencies is described. Effective masses were measured and the Dingle temperature was determined to be 0.74 K +/- 0.04 K. The observation of quantum oscillations within the alpha-3 CDW state gives new insight into the effect of the charge density waves on the Fermi surface. In addition we observed no signature of superconductivity in either transport or magnetization down to 0.020 K indicating the possibility of a pressure-induced quantum critical point that separates the superconducting dome from the normal CDW phase.Comment: 11 pages, 4 figures, 3 table

    Review-Metallic Lithium and the Reduction of Actinide Oxides

    No full text
    Extensive research and process development has been conducted on the electrolytic reduction of actinide oxides inmolten LiCl-Li2O. It is now accepted that the reduction of these metal oxides occurs via two separate reduction mechanisms: direct electro-chemical reduction and mediated chemical reduction by metallic lithium. The deposition of metallic lithium at the cathode (mediated chemical reduction mechanism) during the process is known to be essential in order to achieve high process throughputs and reduction yields, and yet a knowledge gap exists regarding the nature of metallic lithium in this system. This review summarizes the formation of lithium during the process and its dispersion into the molten salt electrolyte. Previously reported aspects of the physical chemistry of the LiCl-Li2O-Li system are presented with a specific focus on the dispersion of Li in the solution. Finally, issues regarding the effect of the presence of lithium on the electrolytic reduction process are discussed. Evidence shows that electrochemically generated metallic lithium is likely a significant source of experimental uncertainty, low current efficiency and Li2O consumption in the oxide reduction process. (C) The Author(s) 2017. Published by ECS. All rights reserved
    corecore