27 research outputs found

    Understanding the Electronic and Thermodynamic Properties of Wide Band Gap Materials

    Get PDF
    Wide band gap (Eg > 3.1 eV) semiconductors are ubiquitous in many present day industrial applications and environmental endeavors. In particular, wide band gap materials find use within photovoltaics, portable electronics, gas sensors, self-cleaning and thermochromic window coatings as well as photocatalysis to name a few. Despite the wide range of current applications, there are still many issues that disrupt advancements in this field. Within the area of transparent conductors (TCs), the dominant materials are all n-type which are themselves dominated by the flagship ITO (Sn-doped In2O3). Due to the expense and scarcity of In, finding an alternative earth-abundant material is key to sate the ever growing demand for consumer electronics. Although SnO2 and ZnO are heralded as alternatives, issues arise such as the failure to realise reproducible ITO-like conductivities as well as a lack of understanding of the limitations that these materials present. Alternatively, p-type TCs are held back by the lack of a degenerate high mobility material to match their n-type counterparts. This means that the formation of a high transparency p-n junction is not yet possible in addition to hindering the efficiency of devices such as photovoltaics. Lastly, wide band gap materials are also used in photocatalysis, in particular with TiO2 which has applications in water splitting as well as antimicrobial surface coatings. Understanding the mechanisms by which TiO2 undergoes photocatalysis and the effects that the intrinsic and extrinsic defect chemistry has is ongoing despite the decades of dedicated study. This thesis aims to address these three topics; n-type and n-type transparent conductors and TiO2 photocatalysis. By using ab-initio density functional theory (DFT) aided by experiment elucidation of the mechanistic shortfalls are carried out providing solutions based on theory and observation

    Transparent conducting n-type ZnO:Sc-synthesis, optoelectronic properties and theoretical insight

    Get PDF
    A joint theoretical-experimental study has been carried out for Sc-doped ZnO (SZO), one of the lesser-studied n-type transparent conducting oxide materials. Density functional theory has been used to create a computational model of SZO, in order to provide a theoretical basis for experimentally-observed phenomena where growth conditions, dopability and electronic properties are concerned. Meanwhile a range of thin films of SZO have been synthesised via chemical vapour deposition in an attempt to (i) observe experimentally the theoretically predicted properties, thereby providing mutual validation of the studies; (ii) seek the optimum dopant quantity for minimal electrical resistivity, and; (iii) demonstrate that transparent and electrically conductive SZO can be synthesised by chemical vapour deposition means. The films exhibit resistivities as low as ρ = 1.2 × 10 -3 Ω cm, with carrier density n = 7.2 × 10 20 cm -3 and charge carrier mobility μ = 7.5 cm 2 V -1 s -1 . Low resistivity of the films was retained after 12 months in storage under ambient conditions, indicating strong atmospheric stability. The films exhibit a high degree of transparency with 88% transmission in the visible range (400-750 nm). A correction to the Tauc method was applied to estimate band gaps of Eoptg = 3.45 ± 0.03 eV in the most conductive SZO sample and Eoptg = 3.34 ± 0.03 eV in nominally undoped ZnO

    Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors

    Get PDF
    The paucity of high performance transparent p-type semiconductors has been a stumbling block for the electronics industry for decades, effectively hindering the route to efficient transparent devices based on p–n junctions. Cu-based oxides and subsequently Cu-based oxychalcogenides have been heavily studied as affordable, earth-abundant p-type transparent semiconductors, where the mixing of the Cu 3d states with the chalcogenide 2p states at the top of the valence band encourages increased valence band dispersion. In this article, we extend this mixing concept further, by utilizing quantum chemistry techniques to investigate ternary copper phosphides as potential high mobility p-type materials. We use hybrid density functional theory to examine a family of phosphides, namely, MCuP (M = Mg, Ca, Sr, Ba) which all possess extremely disperse valence band maxima, comparable to the dispersion of excellent industry standard n-type transparent conducting oxides. As a proof of concept, we synthesized and characterized powders of CaCuP, showing that they display high levels of p-type conductivity, without any external acceptor dopant. Lastly, we discuss the role of Cu-coordination in promoting valence band dispersion and provide design principles for producing degenerate p-type materials

    Photocatalytic, structural and optical properties of mixed anion solid solutions Ba₃Sc₂₋ₓInₓO₅Cu₂S₂ and Ba₃In₂O₅Cu₂S₂₋ySey

    Get PDF
    Nine members of two contiguous solid solutions, Ba3Sc2−xInxO5Cu2S2 and Ba3In2O5Cu2S2−ySey (x, y = 0, 0.5, 1, 1.5 and 2), were synthesised at temperatures between 800 °C and 900 °C by stoichiometric combination of binary precursors. Their structures were determined by Rietveld refinement of X-ray powder diffraction data and found to adopt the SmNi3Ge3 structure with I4/mmm symmetry. Approximate Vegard law relationships were found within each solution between the lattice parameters and composition, with an observed cell volume of 466.4 Å3 for Ba3Sc2O5Cu2S2 increasing to 481.0 Å3 for Ba3In2O5Cu2S2 and finally to 499.0 Å3 for Ba3In2O5Cu2Se2. In the first solid solution, this volume increase is driven by the replacement of scandium by the larger indium ion, generating increased strain in the copper chalcogenide layer. In the second solution the substitution into the structure of the larger selenium drives further volume expansion, while relieving the strain in the copper chalcogenide layer. Band gaps were estimated from reflectance spectroscopy and these were determined to be 3.3 eV, 1.8 eV, and 1.3 eV for the three end members Ba3Sc2O5Cu2S2, Ba3In2O5Cu2S2, and Ba3Sc2In2O5Cu2Se2, respectively. For the intermediate compositions a linear relationship between band gap size and composition was observed, driven in the first solution by the introduction of the more electronegative indium lowering the conduction band minimum and in the second solution by the substitution of the electropositive selenium raising the valance band maximum. Photocatalytic activity was observed in all samples under solar simulated light, based on a dye degradation test, with the exception of Ba3In2O5Cu2Se1.5S0.5. The most active sample was found to be Ba3Sc2O5Cu2S2, the material with the largest band gap

    BaBi₂O₆: A Promising n-Type Thermoelectric Oxide with the PbSb₂O₆ Crystal Structure

    Get PDF
    Thermoelectric materials offer the possibility of enhanced energy efficiency due to waste heat scavenging. Based on their high-temperature stability and ease of synthesis, efficient oxide-based thermoelectrics remain a tantalizing research goal; however, their current performance is significantly lower than the industry standards such as Bi_{2}Te_{3} and PbTe. Among the oxide thermoelectrics studied thus far, the development of n-type thermoelectric oxides has fallen behind that of p-type oxides, primarily due to limitations on the overall dimensionless figure of merit, or ZT, by large lattice thermal conductivities. In this article, we propose a simple strategy based on chemical intuition to discover enhanced n-type oxide thermoelectrics. Using state-of-the-art calculations, we demonstrate that the PbSb_{2}O_{6}-structured BaBi_{2}O_{6} represents a novel structural motif for thermoelectric materials, with a predicted ZT of 0.17–0.19. We then suggest two methods to enhance the ZT up to 0.22, on par with the current best earth-abundant n-type thermoelectric at around 600 K, SrTiO_{3}, which has been much more heavily researched. Our analysis of the factors that govern the electronic and phononic scattering in this system provides a blueprint for optimizing ZT beyond the perfect crystal approximation

    A single-source precursor approach to solution processed indium arsenide thin films

    Get PDF
    This paper reports the synthesis of the novel single-source precursor, [{(MeInAstBu)3}2(Me2InAs(tBu)H)2] and the subsequent first report of aerosol-assisted chemical vapour deposition of InAs thin films. Owing to the use of the single-source precursor, highly crystalline and stoichiometric films were grown at a relatively low deposition temperature of 450 °C. Core level XPS depth profiling studies showed some partial oxidation of the film surface, however this was self-limiting and disappeared on etch profiles. Valence band XPS analysis matched well with the simulated density of state spectrum. Hall effect measurements performed on the films showed that the films were n-type with promising resistivity (3.6 × 10−3 Ω cm) and carrier mobility (410 cm2 V−1 s−1) values despite growth on amorphous glass substrates

    Enhanced electrical properties of antimony doped tin oxide thin films deposited: Via aerosol assisted chemical vapour deposition

    Get PDF
    Transparent conducting oxides have widespread application in modern society but there is a need to move away from the current 'industry champion' tin doped indium oxide (In2O3:Sn) due to high costs. Antimony doped tin(iv) oxide (ATO) is an excellent candidate but is limited by its opto-electrical properties. Here, we present a novel and scalable synthetic route to ATO thin films that shows excellent electrical properties. Resistivity measurements showed that at 4 at% doping the lowest value of 4.7 × 10-4Ω cm was achieved primarily due to a high charge carrier density of 1.2 × 1021cm-3. Further doping induced an increase in resistivity due to a decrease in both the carrier density and mobility. Ab initio hybrid density functional theory (DFT) calculations show the thermodynamic basis for the tail off of performance beyond a certain doping level, and the appearance of Sb(iii) within the doped thin films

    Enhanced photocatalytic and antibacterial ability of Cu-doped anatase TiO2 thin films: theory and experiment.

    Get PDF
    Multifunctional thin films which can display both photocatalytic and antibacterial activity are of great interest industrially. Here, for the first time, we have used aerosol assisted chemical vapour deposition (AACVD) to deposit highly photoactive thin films of Cu-doped anatase TiO2 on glass substrates. The films displayed much enhanced photocatalytic activity relative to pure anatase, and showed excellent antibacterial (vs S.Aureus and E.Coli) ability. Using a combination of transient absorption spectroscopy (TAS), photoluminescence (PL) measurements and hybrid density functional theory calculations, we have gained nanoscopic insights into the improved properties of the Cu-doped TiO2 films. Our analysis has highlighted that the interactions between substitutional and interstitial Cu in the anatase lattice can explain the extended exciton lifetimes observed in the doped samples, and the enhanced UV/visible light photoactivities observed

    Phosphorus doped SnO2 thin films for transparent conducting oxide applications: synthesis, optoelectronic properties and computational models

    Get PDF
    Phosphorus doped tin(iv) oxide (P:SnO2) films have been synthesised by an aerosol assisted chemical vapour deposition route. Triethyl phosphate was used as the phosphorus dopant source. The phosphorus concentration in solution was found to be key to electrical properties, with concentrations between 0.25-0.5 mol% phosphorus giving the lowest resistivities of the deposited films. The conductivity of the films synthesised improved on doping SnO2 with phosphorus, with resistivity values of 7.27 × 10-4 Ω cm and sheet resistance values of 18.2 Ω □-1 achieved for the most conductive films. Phosphorus doping up to 1.0 mol% was shown to improve visible light transmission of the deposited films. The phosphorus doping also had a significant effect on film morphology, with varying microstructures achieved. The films were characterised by X-ray diffraction, scanning electron microscopy, UV/vis spectroscopy, Hall effect measurements and X-ray photoelectron spectroscopy. The data generated was used to build computational models of phosphorus as a dopant for SnO2, showing that the phosphorus acts as a shallow one-electron n-type donor allowing for good conductivities. Phosphorus does not suffer from self-compensation issues associated with other dopants, such as fluorine

    Dispelling the Myth of Passivated Codoping in TiO2

    Get PDF
    Modification of TiO 2 to increase its visible light activity and promote higher performance photocatalytic ability has become a key research goal for materials scientists in the past 2 decades. One of the most popular approaches proposed this as "passivated codoping", whereby an equal number of donor and acceptor dopants are introduced into the lattice, producing a charge neutral system with a reduced band gap. Using the archetypal codoping pairs of [Nb + N]- and [Ta + N]-doped anatase, we demonstrate using hybrid density functional theory that passivated codoping is not achievable in TiO 2 . Our results indicate that the natural defect chemistry of the host system (in this case n-type anatase TiO 2 ) is dominant, and so concentration parity of dopant types is not achievable under any thermodynamic growth conditions. The implications of passivated codoping for band gap manipulation in general are discussed
    corecore