69,747 research outputs found
Visible spectral power emitted from a laser produced uranium plasma
The development of plasma-core nuclear reactors for advanced terrestrial and space-power sources is researched. Experimental measurements of the intensity and the spectral distribution of radiation from a nonfissioning uranium plasma are reported
Development of an ultra-low-shock separation nut
The technical problems encountered in the development of an advanced separation nut design are described. The nut is capable of sustaining a large preload and releasing that load with a low level of induced pyrotechnic shock, while demonstrating a tolerance for extremely high shock imposed by other pyrotechnic devices. The analysis of the separation nut was performed to acquire additional understanding of the phenomena affecting operation of the nut and to provide quantitative evaluation of design modification for aerospace applications
Hamiltonians of Spherically Symmetric, Scale-Free Galaxies in Action-Angle Coordinates
We present a simple formula for the Hamiltonian in terms of the actions for
spherically symmetric, scale-free potentials. The Hamiltonian is a power-law or
logarithmic function of a linear combination of the actions. Our expression
reduces to the well-known results for the familiar cases of the harmonic
oscillator and the Kepler potential. For other power-laws, as well as for the
singular isothermal sphere, it is exact for the radial and circular orbits, and
very accurate for general orbits. Numerical tests show that the errors are
always small, with mean errors across a grid of actions always less than 1 %
and maximum errors less than 2.5 %. Simple first-order corrections can reduce
mean errors to less than 0.6 % and maximum errors to less than 1 %. We use our
new result to show that :[1] the misalignment angle between debris in a stream
and a progenitor is always very nearly zero in spherical scale-free potentials,
demonstrating that streams can be sometimes well approximated by orbits, [2]
the effects of an adiabatic change in the stellar density profile in the inner
regions of a galaxy weaken any existing 1/r density cusp, which is reduced to
. More generally, we derive the full range of adiabatic cusp
transformations and show how to relate the starting cusp index to the final
cusp index. It follows that adiabatic transformations can never erase a dark
matter cusp.Comment: 6 pages, MNRAS, in pres
State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy
We consider a connection-level model of Internet congestion control,
introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000)
185--201], that represents the randomly varying number of flows present in a
network. Here, bandwidth is shared fairly among elastic document transfers
according to a weighted -fair bandwidth sharing policy introduced by Mo
and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] []. Assuming Poisson arrivals and exponentially distributed document
sizes, we focus on the heavy traffic regime in which the average load placed on
each resource is approximately equal to its capacity. A fluid model (or
functional law of large numbers approximation) for this stochastic model was
derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083]
by two of the authors. Here, we use the long-time behavior of the solutions of
the fluid model established in that paper to derive a property called
multiplicative state space collapse, which, loosely speaking, shows that in
diffusion scale, the flow count process for the stochastic model can be
approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Theory of Feshbach molecule formation in a dilute gas during a magnetic field ramp
Starting with coupled atom-molecule Boltzmann equations, we develop a
simplified model to understand molecule formation observed in recent
experiments. Our theory predicts several key features: (1) the effective
adiabatic rate constant is proportional to density; (2) in an adiabatic ramp,
the dependence of molecular fraction on magnetic field resembles an error
function whose width and centroid are related to the temperature; (3) the
molecular production efficiency is a universal function of the initial phase
space density, the specific form of which we derive for a classical gas. Our
predictions show qualitative agreement with the data from [Hodby et al, Phys.
Rev. Lett. {\bf{94}}, 120402 (2005)] without the use of adjustable parameters
Magnetocaloric effect in Gd/W thin film heterostructures
In an effort to understand the impact of nanostructuring on the
magnetocaloric effect, we have grown and studied gadolinium in MgO/W(50
)/[Gd(400 )/W(50 )]
heterostructures. The entropy change associated with the second order magnetic
phase transition was determined from the isothermal magnetization for numerous
temperatures and the appropriate Maxwell relation. The entropy change peaks at
a temperature of 284 K with a value of approximately 3.4 J/kg-K for a 0-30 kOe
field change; the full width at half max of the entropy change peak is about 70
K, which is significantly wider than that of bulk Gd under similar conditions.
The relative cooling power of this nanoscale system is about 240 J/kg, somewhat
lower than that of bulk Gd (410 J/kg). An iterative Kovel-Fisher method was
used to determine the critical exponents governing the phase transition to be
, and . Along with a suppressed Curie temperature
relative to the bulk, the fact that the convergent value of is that
predicted by the 2-D Ising model may suggest that finite size effects play an
important role in this system. Together, these observations suggest that
nanostructuring may be a promising route to tailoring the magnetocaloric
response of materials
- …