4,171 research outputs found
Tidally discontinuous ocean forcing in bar-built estuaries: The interaction of tides, infragravity motions, and frictional control
Shallow, bar-built estuaries on wave-dominated coasts in Mediterranean climates experience an intermittent connection to the ocean. In the presence of low streamflow, their inlets may completely close as a result of nearshore sand transport, but even in the open condition, these inlets remain constricted. Extensive field measurements in the highly salt-stratified Pescadero estuary in northern California show that the shallow mouth causes these estuaries to experience discontinuous tidal forcing. While the ocean and estuary are fully connected with near-equal water levels, tidal velocities are slow but infragravity motions in the nearshore induce large velocity oscillations within the estuary. As the ocean tide falls, infragravity forcing is cut off, because the estuarine mouth is perched above the low tide ocean water level, and ebbing velocities are set by bed friction. Observations reveal this oscillation between ocean-forced and frictionally controlled conditions characterizes and sets estuarine hydrodynamics. Additional wave setup of the lagoon emphasizes the dependence of these estuaries on nearshore ocean conditions, but the diurnal or semidiurnal retreat of the ocean below the mouth cuts off this nearshore influence so it too is tidally varying. Here we present detailed observations and a framework for understanding hydrodynamics in small, shallow bar-built estuaries
Critical properties of loop percolation models with optimization constraints
We study loop percolation models in two and in three space dimensions, in
which configurations of occupied bonds are forced to form closed loop. We show
that the uncorrelated occupation of elementary plaquettes of the square and the
simple cubic lattice by elementary loops leads to a percolation transition that
is in the same universality class as the conventional bond percolation. In
contrast to this an optimization constraint for the loop configurations, which
then have to minimize a particular generic energy function, leads to a
percolation transition that constitutes a new universality class, for which we
report the critical exponents. Implication for the physics of solid-on-solid
and vortex glass models are discussed.Comment: 8 pages, 8 figure
Long-term perturbations due to a disturbing body in elliptic inclined orbit
In the current study, a double-averaged analytical model including the action
of the perturbing body's inclination is developed to study third-body
perturbations. The disturbing function is expanded in the form of Legendre
polynomials truncated up to the second-order term, and then is averaged over
the periods of the spacecraft and the perturbing body. The efficiency of the
double-averaged algorithm is verified with the full elliptic restricted
three-body model. Comparisons with the previous study for a lunar satellite
perturbed by Earth are presented to measure the effect of the perturbing body's
inclination, and illustrate that the lunar obliquity with the value 6.68\degree
is important for the mean motion of a lunar satellite. The application to the
Mars-Sun system is shown to prove the validity of the double-averaged model. It
can be seen that the algorithm is effective to predict the long-term behavior
of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged
model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure
Continuum limit of amorphous elastic bodies: A finite-size study of low frequency harmonic vibrations
The approach of the elastic continuum limit in small amorphous bodies formed
by weakly polydisperse Lennard-Jones beads is investigated in a systematic
finite-size study. We show that classical continuum elasticity breaks down when
the wavelength of the sollicitation is smaller than a characteristic length of
approximately 30 molecular sizes. Due to this surprisingly large effect
ensembles containing up to N=40,000 particles have been required in two
dimensions to yield a convincing match with the classical continuum predictions
for the eigenfrequency spectrum of disk-shaped aggregates and periodic bulk
systems. The existence of an effective length scale \xi is confirmed by the
analysis of the (non-gaussian) noisy part of the low frequency vibrational
eigenmodes. Moreover, we relate it to the {\em non-affine} part of the
displacement fields under imposed elongation and shear. Similar correlations
(vortices) are indeed observed on distances up to \xi~30 particle sizes.Comment: 28 pages, 13 figures, 3 table
Tidal torques. A critical review of some techniques
We point out that the MacDonald formula for body-tide torques is valid only
in the zeroth order of e/Q, while its time-average is valid in the first order.
So the formula cannot be used for analysis in higher orders of e/Q. This
necessitates corrections in the theory of tidal despinning and libration
damping.
We prove that when the inclination is low and phase lags are linear in
frequency, the Kaula series is equivalent to a corrected version of the
MacDonald method. The correction to MacDonald's approach would be to set the
phase lag of the integral bulge proportional to the instantaneous frequency.
The equivalence of descriptions gets violated by a nonlinear
frequency-dependence of the lag.
We explain that both the MacDonald- and Darwin-torque-based derivations of
the popular formula for the tidal despinning rate are limited to low
inclinations and to the phase lags being linear in frequency. The
Darwin-torque-based derivation, though, is general enough to accommodate both a
finite inclination and the actual rheology.
Although rheologies with Q scaling as the frequency to a positive power make
the torque diverge at a zero frequency, this reveals not the impossible nature
of the rheology, but a flaw in mathematics, i.e., a common misassumption that
damping merely provides lags to the terms of the Fourier series for the tidal
potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the
magnitudes of the terms, too, get changed. Reinstating of this detail tames the
infinities and rehabilitates the "impossible" scaling law (which happens to be
the actual law the terrestrial planets obey at low frequencies).Comment: arXiv admin note: sections 4 and 9 of this paper contain substantial
text overlap with arXiv:0712.105
Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh
Based on ab initio total energy calculations we show that two magnetic states
of rhodium atoms together with competing ferromagnetic and antiferromagnetic
exchange interactions are responsible for a temperature induced metamagnetic
phase transition, which experimentally is observed for stoichiometric
alpha-FeRh. A first-principle spin-based model allows to reproduce this
first-order metamagnetic transition by means of Monte Carlo simulations.
Further inclusion of spacial variation of exchange parameters leads to a
realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.
An Electron Paramagnetic Resonance (EPR) spectroscopy study on the γ-irradiation sterilization of the pharmaceutical excipient l-histidine: Regeneration of the radicals in solution
The effects of γ-radiation sterilization on the parenteral excipient L-histidine were analysed by means of EPR spectroscopy. The irradiation process was found to induce the formation of a deamination radical which was persistent in the solid state. The nature and reactivity of the radicals following dissolution in water was evaluated using spin-trapping EPR experiments. The deamination radical was found to regenerate in solution in the presence of trace metals, potentially leading to radical induced degradation reactions occurring up to an hour after the dissolution process. Understanding this process is significant for the improved design of parental pharmaceutical formulations in which unwanted radical reactions after γ radiation sterilization could lead to degradation of active ingredients
Hepatic effects of tartrazine (E 102) after systemic exposure are independent of oestrogen receptor interactions in the mouse
Tartrazine is a food colour that activates the transcriptional function of the human oestrogen receptor alpha in an in vitro cell model. Since oestrogens are cholestatic, we hypothesised tartrazine will cause periportal injury to the liver in vivo. To test this hypothesis, tartrazine was initially administered systemically to mice resulting in a periportal recruitment of inflammatory cells, increased serum alkaline phosphatase activity and mild periportal fibrosis. To determine whether an oestrogenic effect may be a key event in this response, tartrazine, sulphonated metabolites and a food additive contaminant were screened for their ability to interact with murine oestrogen receptors. In all cases, there were no interactions as agonists or antagonists and further, no oestrogenicity was observed with tartrazine in an in vivo uterine growth assay. To examine the relevance of the hepatic effects of tartrazine to its use as a food additive, tartrazine was orally administered to transgenic NF-κB-Luc mice. Pre- and concurrent oral treatment with alcohol was incorporated given its potential to promote gut permeability and hepatic inflammation. Tartrazine alone induced NF- κB activities in the colon and liver but there was no periportal recruitment of inflammatory cells or fibrosis. Tartrazine, its sulphonated metabolites and the contaminant inhibited sulphotransferase activities in murine hepatic S9 extracts. Given the role of sulfotransferases in bile acid excretion, the initiating event giving rise to periportal inflammation and subsequent hepatic pathology through systemic tartrazine exposure is therefore potentially associated an inhibition of bile acid sulphation and excretion and not on oestrogen receptor-mediated transcriptional function. However, these effects were restricted to systemic exposures to tartrazine and did not occur to any significant effect after oral exposure
Large emergency-response exercises: qualitative characteristics - a survey
Exercises, drills, or simulations are widely used, by governments, agencies and commercial organizations, to simulate serious incidents and train staff how to respond to them. International cooperation has led to increasingly large-scale exercises, often involving hundreds or even thousands of participants in many locations. The difference between ‘large’ and ‘small’ exercises is more than one of size: (a) Large exercises are more ‘experiential’ and more likely to undermine any model of reality that single organizations may create; (b) they create a ‘play space’ in which organizations and individuals act out their own needs and identifications, and a ritual with strong social implications; (c) group-analytic psychotherapy suggests that the emotions aroused in a large group may be stronger and more difficult to control. Feelings are an unacknowledged major factor in the success or failure of exercises; (d) successful large exercises help improve the nature of trust between individuals and the organizations they represent, changing it from a situational trust to a personal trust; (e) it is more difficult to learn from large exercises or to apply the lessons identified; (f) however, large exercises can help develop organizations and individuals. Exercises (and simulation in general) need to be approached from a broader multidisciplinary direction if their full potential is to be realized
- …
