57,928 research outputs found
Unimodular integer circulants associated with trinomials
The n � n circulant matrix associated with the polynomial [image removed] (with d < n) is the one with first row (a0 ? ad 0 ? 0). The problem as to when such circulants are unimodular arises in the theory of cyclically presented groups and leads to the following question, previously studied by Odoni and Cremona: when is Res(f(t), tn-1) = �1? We give a complete answer to this question for trinomials f(t) = tm � tk � 1. Our main result was conjectured by the author in an earlier paper and (with two exceptions) implies the classification of the finite Cavicchioli?Hegenbarth?Repov? generalized Fibonacci groups, thus giving an almost complete answer to a question of Bardakov and Vesnin
Development of an ultra-low-shock separation nut
The technical problems encountered in the development of an advanced separation nut design are described. The nut is capable of sustaining a large preload and releasing that load with a low level of induced pyrotechnic shock, while demonstrating a tolerance for extremely high shock imposed by other pyrotechnic devices. The analysis of the separation nut was performed to acquire additional understanding of the phenomena affecting operation of the nut and to provide quantitative evaluation of design modification for aerospace applications
Magnetocaloric effect in Gd/W thin film heterostructures
In an effort to understand the impact of nanostructuring on the
magnetocaloric effect, we have grown and studied gadolinium in MgO/W(50
)/[Gd(400 )/W(50 )]
heterostructures. The entropy change associated with the second order magnetic
phase transition was determined from the isothermal magnetization for numerous
temperatures and the appropriate Maxwell relation. The entropy change peaks at
a temperature of 284 K with a value of approximately 3.4 J/kg-K for a 0-30 kOe
field change; the full width at half max of the entropy change peak is about 70
K, which is significantly wider than that of bulk Gd under similar conditions.
The relative cooling power of this nanoscale system is about 240 J/kg, somewhat
lower than that of bulk Gd (410 J/kg). An iterative Kovel-Fisher method was
used to determine the critical exponents governing the phase transition to be
, and . Along with a suppressed Curie temperature
relative to the bulk, the fact that the convergent value of is that
predicted by the 2-D Ising model may suggest that finite size effects play an
important role in this system. Together, these observations suggest that
nanostructuring may be a promising route to tailoring the magnetocaloric
response of materials
Mining Frequent Graph Patterns with Differential Privacy
Discovering frequent graph patterns in a graph database offers valuable
information in a variety of applications. However, if the graph dataset
contains sensitive data of individuals such as mobile phone-call graphs and
web-click graphs, releasing discovered frequent patterns may present a threat
to the privacy of individuals. {\em Differential privacy} has recently emerged
as the {\em de facto} standard for private data analysis due to its provable
privacy guarantee. In this paper we propose the first differentially private
algorithm for mining frequent graph patterns.
We first show that previous techniques on differentially private discovery of
frequent {\em itemsets} cannot apply in mining frequent graph patterns due to
the inherent complexity of handling structural information in graphs. We then
address this challenge by proposing a Markov Chain Monte Carlo (MCMC) sampling
based algorithm. Unlike previous work on frequent itemset mining, our
techniques do not rely on the output of a non-private mining algorithm.
Instead, we observe that both frequent graph pattern mining and the guarantee
of differential privacy can be unified into an MCMC sampling framework. In
addition, we establish the privacy and utility guarantee of our algorithm and
propose an efficient neighboring pattern counting technique as well.
Experimental results show that the proposed algorithm is able to output
frequent patterns with good precision
A rotor-mounted digital instrumentation system for helicopter blade flight research measurements
A rotor mounted flight instrumentation system developed for helicopter rotor blade research is described. The system utilizes high speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested on an AH-1G helicopter. The system employs microelectronic pulse code modulation (PCM) multiplexer digitizer stations located remotely on the blade and in a hub mounted metal canister. As many as 25 sensors can be remotely digitized by a 2.5 mm thick electronics package mounted on the blade near the tip to reduce blade wiring. The electronics contained in the canister digitizes up to 16 sensors, formats these data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data are transmitted over an RF link to the ground for real time monitoring and to the helicopter fuselage for tape recording. The complete system is powered by batteries located in the canister and requires no slip rings on the rotor shaft
Evolutional Entanglement in Nonequilibrium Processes
Entanglement in nonequilibrium systems is considered. A general definition
for entanglement measure is introduced, which can be applied for characterizing
the level of entanglement produced by arbitrary operators. Applying this
definition to reduced density matrices makes it possible to measure the
entanglement in nonequilibrium as well as in equilibrium statistical systems.
An example of a multimode Bose-Einstein condensate is discussed.Comment: 10 pages, Late
Gravitational Wilson Loop in Discrete Quantum Gravity
Results for the gravitational Wilson loop, in particular the area law for
large loops in the strong coupling region, and the argument for an effective
positive cosmological constant discussed in a previous paper, are extended to
other proposed theories of discrete quantum gravity in the strong coupling
limit. We argue that the area law is a generic feature of almost all
non-perturbative lattice formulations, for sufficiently strong gravitational
coupling. The effects on gravitational Wilson loops of the inclusion of various
types of light matter coupled to lattice quantum gravity are discussed as well.
One finds that significant modifications to the area law can only arise from
extremely light matter particles. The paper ends with some general comments on
possible physically observable consequences.Comment: 39 pages, 10 figure
- …