97,972 research outputs found
Compression failure mechanisms in unidirectional composites
Compression failure mechanisms in unidirectional composites were examined. Possible failure modes of constituent materials are summarized and analytical models for fiber microbuckling are reviewed from a unified viewpoint. Due to deficiencies in available models, a failure model based on nonlinear properties and initial fiber curvature is proposed. The effect of constituent properties on composite compression behavior was experimentally investigated using two different graphite fibers and four different epoxy resins. The predominant microscopic scale failure mode was found to be shear crippling. In a soft resin, shear crippling was in the form of buckling of fibers on a microscopic scale. However, stiff resins failure was characterized by the formation of a kink band. For unidirectional laminates, compressive strength, and compressive modulus to a less extent, were found to increase with increasing magnitude of resin modulus. The change in compressive strength with resin modulus was predicted using the proposed nonlinear model
Constitutive acoustic-emission elastic-stress behavior of magnesium alloy
Repeated laoding and unloading of a magnesium alloy below the macroscopic yield stress result in continuous acoustic emissions which are generally repeatable for a given specimen and which are reproducible between different specimens having the same load history. An acoustic emission Bauschinger strain model is proposed to describe the unloading emission behavior. For the limited range of stress examined, loading and unloading stress delays of the order of 50 MN/sq m are observed, and they appear to be dependent upon the direction of loading, the stress rate, and the stress history. The stress delay is hypothesized to be the manifestation of an effective friction stress. The existence of acoustic emission elastic stress constitutive relations is concluded, which provides support for a previously proposed concept for the monitoring of elastic stresses by acoustic emission
Study to determine an improved method for Apollo propellant system decontamination and propellant tank drying Summary report
Vapor phase cleaning method for Apollo propellant system decontamination and propellant tank dryin
The effect of impact damage and circular holes on the compressive strength of a graphite-epoxy laminate
Specimens were impacted by 1.27-cm-diameter aluminum spheres with speeds ranging from 52 to 101 m/s. Some specimens were impacted without any applied compressive load and then loaded to failure to determine their residual strength. Other specimens were loaded to a prescribed axial compressive strain and impacted while at that applied load. Loaded specimens that did not fail catastrophically on impact were subsequently loaded to failure to determine their residual strength. Low-velocity impact damage was found to degrade seriously the laminate static compressive strength. Low-strain compression-compression cyclic loading was found to degrade further the compressive strength of impact-damaged specimens. Specimens with circular holes having diameters up to a third of the specimen width were loaded to failure in compression. It was found that circular holes can also degrade the static compressive strength of the laminate. The effects of circular holes and impact damage on the compressive strength of the laminate are compared
Progress in Lunar Laser Ranging Tests of Relativistic Gravity
Analyses of laser ranges to the Moon provide increasingly stringent limits on
any violation of the Equivalence Principle (EP); they also enable several very
accurate tests of relativistic gravity. We report the results of our recent
analysis of Lunar Laser Ranging (LLR) data giving an EP test of \Delta
(M_G/M_I)_{EP} =(-1.0 +/- 1.4) x 10^{-13}. This result yields a Strong
Equivalence Principle (SEP) test of \Delta (M_G/M_I)_{SEP} =(-2.0 +/- 2.0) x
10^{-13}. Also, the corresponding SEP violation parameter \eta is (4.4 +/- 4.5)
x 10^{-4}, where \eta=4\beta-\gamma-3 and both \beta and \gamma are
parametrized post-Newtonian (PPN) parameters. Using the recent Cassini result
for the parameter \gamma, PPN parameter \beta is determined to be \beta-1=(1.2
+/- 1.1) x 10^{-4}. The geodetic precession test, expressed as a relative
deviation from general relativity, is K_{gp}=-0.0019 +/- 0.0064. The search for
a time variation in the gravitational constant results in \dot G/G=(4 +/- 9) x
10^{-13} yr^{-1}, consequently there is no evidence for local (~1AU) scale
expansion of the solar system.Comment: 4 pages, revtex4, minor changes made for publicatio
Effect of Low Velocity Impact Damage on the Compressive Strength of Graphite/Epoxy Hat-Stiffened Panels
Low velocity impact damage on the compressive strength of graphite/epoxy hat stiffened panels is studied. Fourteen panels, representative of minimum-mass designs for two compression load levels were tested. Eight panels were damaged by impact and the effect on compressive strength was evaluated by comparing the results with data for undamaged panels. The impact tests consisted of firing 1.27 cm diameter aluminum projectiles normal to the plane of the panel at a velocity of approximately 55 m/sec to simulate impact from runway debris. The results of this investigation indicate that impact damage in the panels designed for 0.53 MN/m was contained locally and the damaged panels were capable of carrying the design load. The panels designed for 1.58 MN/m failed between 50 and 58 percent of the design load due to impact damage in the high axial stiffness region. The extent of damage in the high axial stiffness region of both panel designs increased with the magnitude of applied axial load. Damage in this region was the most significant factor in reducing panel strength. Limited damage that was not visually detectable reduced ultimate strength as much as extensive visible damage
The effect of resin toughness and modulus on compressive failure modes of quasi-isotropic graphite/epoxy laminates
Compressive failure mechanisms in quasi-isotropic graphite/epoxy laminates were characterized for both unnotched and notched specimens and also following damage by impact. Two types of fibers (Thornel 300 and 700) and four resin systems (Narmco 5208, American Cyanamid BP907, and Union Carbide 4901/MDA and 4901/mPDA) were studied. For all material combinations, failure of unnotched specimens was initiated by kinking of fibers in the 0-degree plies. A major difference was observed, however, in the mode of failure propagation after the 0-degree ply failure. The strength of quasi-isotropic laminates in general increased with increasing resin tensile modulus. The laminates made with Thornel 700 fibers exhibited slightly lower compressive strengths than did the laminates made with Thornel 300 fibers. The notch sensitivity as measured by the hole strength was lowest for the BP907 resin and highest for the 5208 resin. For the materials studied, however, the type of fiber had no effect on the notch sensitivity
Evaluation of a semi-active gravity gradient system. Volume I - Technical summary
Semi-active gravity gradient system for attitude control of earth oriented spacecraf
Evaluation of a semi-active gravity gradient system. Volume II - Appendices
Evaluation of semi-active gravity gradient system - appendixe
- …