3,843 research outputs found

    Visualization and Analysis Tools for Ultrascale Climate Data

    Get PDF
    Increasingly large climate model simulations are enhancing our understanding of the processes and causes of anthropogenic climate change, thanks to very large public investments in high-performance computing at national and international institutions. Various climate models implement mathematical approximations of nature in different ways, which are often based on differing computational grids. These complex, parallelized coupled system codes combine numerous complex submodels (ocean, atmosphere, land, biosphere, sea ice, land ice, etc.) that represent components of the larger complex climate system

    Better Tools to Build Better Climate Models

    Get PDF
    A Department of Energy collaboration aims to make climate model development faster and more efficient by creating a prototype of a system for testing model components

    The Earth System Grid Federation: Delivering globally accessible petascale data for CMIP5

    Get PDF
    The fifth Coupled Model Intercomparison Project (CMIP5) will involve the global production and analysis of petabytes of data. The Program for Climate Model Diagnosis and Intercomparison (PCMDI), with responsibility for archival for CMIP5, has established the global “Earth System Grid Federation” (ESGF) of data producers and data archives to support CMIP5. ESGF will provide a set of globally synchronised views of globally distributed data – including some large cache replicants which will be persisted for (at least) decades. Here we describe the archive requirements and key aspects of the resulting architecture. ESGF will stress international networks, as well as the data archives themselves – but significantly less than would have been the case of a centralised archive. Developing and deploying the ESGF has exploited good will and best efforts, but future developments are likely to require more formalised architecture and management

    Intracranial EEG fluctuates over months after implanting electrodes in human brain.

    Get PDF
    OBJECTIVE: Implanting subdural and penetrating electrodes in the brain causes acute trauma and inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior and its potential impact on clinical decision-making and algorithms for implanted devices have not been assessed in detail. In this study we aim to characterize the temporal and spatial variability of continuous, prolonged human iEEG recordings. APPROACH: Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously monitored for an average of 18 months, was included in this study. Time and spectral domain features were computed each day for each channel for the duration of each patient\u27s recording. Metrics to capture post-implantation feature changes and inflexion points were computed on group and individual levels. A linear mixed model was used to characterize transient group-level changes in feature values post-implantation and independent linear models were used to describe individual variability. MAIN RESULTS: A significant decline in features important to seizure detection and prediction algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and high gamma bands, was observed in many patients over 100 d following implantation. In addition, spatial variability across electrodes declines post-implantation following a similar timeframe. All selected features decreased by 14-50% in the initial 75 d of recording on the group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings indicate that iEEG signal features demonstrate increased variability following implantation, most notably in the weeks immediately post-implant. SIGNIFICANCE: These findings suggest that conclusions drawn from iEEG, both clinically and for research, should account for spatiotemporal signal variability and that properly assessing the iEEG in patients, depending upon the application, may require extended monitoring

    Distribution of the time at which the deviation of a Brownian motion is maximum before its first-passage time

    Full text link
    We calculate analytically the probability density P(tm)P(t_m) of the time tmt_m at which a continuous-time Brownian motion (with and without drift) attains its maximum before passing through the origin for the first time. We also compute the joint probability density P(M,tm)P(M,t_m) of the maximum MM and tmt_m. In the driftless case, we find that P(tm)P(t_m) has power-law tails: P(tm)tm3/2P(t_m)\sim t_m^{-3/2} for large tmt_m and P(tm)tm1/2P(t_m)\sim t_m^{-1/2} for small tmt_m. In presence of a drift towards the origin, P(tm)P(t_m) decays exponentially for large tmt_m. The results from numerical simulations are in excellent agreement with our analytical predictions.Comment: 13 pages, 5 figures. Published in Journal of Statistical Mechanics: Theory and Experiment (J. Stat. Mech. (2007) P10008, doi:10.1088/1742-5468/2007/10/P10008

    Long Range Hydration Effects in Electrolytic Free Suspended Black Films

    Full text link
    The force law within free suspended black films made of negatively charged Aerosol-OT (AOT) with added LiCl or CsCl is studied accurately using X-ray reflectivity (ca. 1{\AA}). We find an electrolyte concentration threshold above which a substantial additional repulsion is detected in the LiCl films, up to distances of 100 {\AA}. We interpret this phenomenon as an augmentation of the Debye screening length, due to the local screening of the condensed hydrophilic counterions by the primary hydration shell.Comment: 4 pages, 4 figures, to be published Phys. Rev. Let
    corecore