68 research outputs found

    Statistical estimation of source location in presence of geoacoustic inversion uncertainty

    Get PDF
    Abstract: A statistical estimation of source location incorporating uncertainty in ocean environmental model parameters is derived using a Bayesian approach. From a previous geoacoustic inversion, a posterior probability distribution of the environmental parameters that reflects uncertainty in the ocean environment is obtained. This geoacoustic uncertainty then is mapped into uncertainty in the acoustic pressure field and is propagated through the Bartlett matched-field processor for source localization. Using data from the ASIAEX 2001 East China Sea experiment, the estimated source location and variability over time are compared with the known source positions

    Development of extinction imagers for the determination of atmospheric optical extinction: final report

    Get PDF
    The primary goals of this project for JTO and ONR (Grant N00014-07-1-1060) were to further develop Extinction Imagers for use in the ocean environment, and to extend the capabilities into the Short Wave IR (SWIR). Extinction Imaging is a method for determining the effective extinction coefficient over an extended path using a sensor at one end of the path. It uses calibrated imagers to acquire the relative radiance of a dark target near the other the end of the path and the horizon sky in the direction of the dark target. It is completely passive and thus covert, and the hardware is robust and relatively inexpensive. It uses rigorous equations, which determine the extinction coefficient from the measured apparent contrast of the radiance of the dark target with respect to the horizon sky. The project was very successful. We found that the ocean surface could readily be used as a dark target in red and SWIR wavelengths. Both the red and the SWIR measurement results were excellent for daytime. Comparisons with standard instruments, as well as uncertainty analysis, indicated that extinction imagers provide better measurements of the atmospheric extinction losses over extended paths than other methods of which we are aware. Our secondary goals were to address the night regime, and to address slanted paths above the horizontal. Regarding night, we found that the visible sensor acquired excellent data, but the ocean surface was not a good dark target in our wavelengths. Recommendations on the handling of night are given in the report. Regarding the lines of sight above the horizon, we developed a slant path algorithm that determines beam transmittance. It performed very well. Recommendations are made regarding integration of these techniques for military applications.Joint Technology Office via Office of Naval ResearchGrant N00014-07-1-106

    Performance of MISO Time Reversal Ultra-wideband over an 802.15.3a Channel Model

    Get PDF
    Abstract-This paper analyzes the performance of a baseband multiple-input single-output (MISO) time reversal ultrawideband system (TR-UWB) over the IEEE 802.15.3a channel model. Two scenarios are considered, CM1 based on LOS (0-4m) channel measurements and CM3 based on NLOS (4-10m) channel measurements. A semi-analytical performance expression is derived and compared with simulation results in terms of the number of antenna elements, number of users, and transmission rate. The results show that the system performance is improved with an increase in the number of transmit antenna elements and that additional equalization and multiple access enhancement schemes are necessary for high transmission rates

    The genetic architecture of type 2 diabetes

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes

    Tracking Refractivity From Clutter Using Kalman and Particle Filters

    No full text
    This paper addresses the problem of tracking the spatial and temporal lower atmospheric variations in maritime environments. The evolution of the range and height-dependent index of refraction is tracked using the sea clutter return from sea-borne radars operating in the region. A split-step fast Fourier transform based parabolic equation approximation to the wave equation is used to compute the clutter return in complex environments with varying index of refraction. In addition, regional statistics are incorporated as prior densities, resulting in a highly nonlinear and non-Gaussian tracking problem. Tracking algorithms such as the extended Kalman, unscented Kalman and particle filters are used for tracking both evaporative and surfacebased electromagnetic ducts frequently encountered in marine environments. The tracking performances and applicability of these techniques to different types of refractivity-from-clutter problems are studied using the posterior Cramér-Rao lower bound. Track divergence statistics are analyzed. The results show that while the tracking performance of the Kalman filters is comparable to the particle filters in evaporative duct tracking, it is limited by the high non-linearity of the parabolic equation for the surface-based duct case. Particle filters, on the other hand, prove to be very promising in tracking a wide range of environments including the abruptly changing ones
    corecore