20 research outputs found

    Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars

    Get PDF
    Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. In this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars. Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (Ea) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D0) spanning three orders of magnitude from 2.4 × 10−3 to 8.9 × 10−1 cm2 s−1. As a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest

    Application of the Uranium–Helium Chronometer to the Analysis of Nuclear Forensic Materials

    No full text
    Radiochronometers are used to constrain the manufacturing and processing history of actinide materials for nuclear forensic investigations. This paper describes U–He ages and He diffusion kinetics obtained from a metallic, highly enriched uranium sample. The average U–He age is 8% older than the known casting date, which indicates that excess He is present and is likely due to incomplete degassing of pre-existing He during the casting process. Although the U–He age is older than expected, the accuracy is comparable to other chronometers that have been applied to this material. Diffusion kinetics obtained from the uranium metal indicate that He is quantitatively retained under plausible storage conditions

    Evidence for Asteroid Scattering and Distal Solar System Solids From Meteorite Paleomagnetism

    No full text
    Asteroid-sized bodies are predicted to have been scattered throughout the solar system following gravitational interactions with the giant planets. This process could have delivered water-rich small bodies to the inner solar system. However, evidence from the meteorite record supporting this scattering is limited due to difficulties in recovering the formation distance of meteorite parent bodies from laboratory measurements. Moreover, ancient millimeter-sized solids that formed in the inner solar system (calcium–aluminum-rich inclusions (CAIs) and chondrules) have also been proposed to have migrated throughout the solar system, which could have been key to their survival. Our understanding of the driving mechanisms, distances, and timings involved in this motion is also restricted for the same reasons. Here, we address these limitations by recovering the formation distance of the parent asteroid of the Tagish Lake meteorite from measurements of its natural remanent magnetization. We find that this meteorite experienced an ancient field intensity 8–13 au, suggesting this body originates from the distal solar system. Tagish Lake came to Earth from the asteroid belt which, combined with our recovered formation distance, suggests that some small bodies traveled large distances throughout the solar system. Moreover, Tagish Lake contains CAIs and chondrules, indicating that these solids were capable of traveling to the distal solar system within just a few million years.NASA EmergingWorlds program (grant no. NNX15AH72G)U..S. Department of Energy (Contract no. DE-AC52-07NA27344)Laboratory Directed Research and Development (grant no. 17-ERD-001
    corecore