4,409 research outputs found

    Analysis Of Online Customer Reviews

    Get PDF
    The overall satisfaction of the customer is an important issue for online retailers.  This paper analyzes online customer ratings of electronic goods in the areas of Overall Customer Satisfaction, Customer Service, Delivery, Ease of Purchase, Price, and Shipping Options.  The authors develop neural network and multiple regression models that relate Overall Customer Satisfaction evaluations to the other rating factors.  By using these models, online retail managers can determine how to best allocate their resources to improve customer service, delivery, ease of purchase, price, and/or shipping options in ways that can best improve overall customer satisfaction

    The design and construction of an electronic D-C analog computer

    Get PDF
    To make this project realizable with the funds available and in the time allowed, and to set forth some definite goals, the following objectives were adopted: Design, construct, and place in working order a d-c electronic analog computer capable of solving 4th order linear differential equations with constant coefficients. Include in the design provisions for real time computation, and also fast, repetitive operation. Provide for later expansion of the computer installation. Limit expenditures to $700 --Introduction, page 4

    Mixing by microorganisms in stratified fluids

    Get PDF
    We examine the vertical mixing induced by the swimming of microorganisms at low Reynolds and Péclet numbers in a stably stratified ocean, and show that the global contribution of oceanic microswimmers to vertical mixing is negligible. We propose two approaches to estimating the mixing efficiency, η, or the ratio of the rate of potential energy creation to the total rate-of-working on the ocean by microswimmers. The first is based on scaling arguments and estimates η in terms of the ratio between the typical organism size, a, and an intrinsic length scale for the stratified flow, l = (νκ/N2)1/4, where ν is the kinematic viscosity, κ the diffusivity, and N the buoyancy frequency. In particular, for small organisms in the relevant oceanic limit, a/l \u3c\u3c 1, we predict the scaling η ∼ (a/l)3. The second estimate of η is formed by solving the full coupled flow-stratification problem by modeling the swimmer as a regularized force dipole, and computing the efficiency numerically. Our computational results, which are examined for all ratios a/l, validate the scaling arguments in the limit a/l \u3c\u3c 1 and further predict η ≈ 1.2(a/l)3 for vertical swimming and η ≈ 0.15 (a/l)3 for horizontal swimming. These results, relevant for any stratified fluid rich in biological activity, imply that the mixing efficiency of swimming microorganisms in the ocean is at very most 8% and is likely smaller by at least two orders of magnitude

    Real Property

    Get PDF

    Real Property

    Get PDF

    Passive Attitude Control to Decrease CubeSatellite Complexity

    Get PDF
    Attitude control is often a requirement for the optimal functionality of satellite payloads. The McMaster Neutron Dosimetry and Exploration (NEUDOSE) mission aims to measure charged and neutral radiation in Low Earth Orbit. NEUDOSE can detect particles effectively from any direction due to its spherical symmetry, meaning unlike most satellite missions, it does not require attitude control to function. The attitude is still crucial for the mission in order to achieve optimal communication. The NEUDOSE satellite utilizes Ultra High Frequency and Very High Frequency dipole antennas for communication. If the satellite’s attitude lines up in a specific orientation, communication will be hindered due to the nature of the antenna’s radiation pattern. With short access times to the ground station, and relatively small amounts of data being transferred, effective communication is important for the success of the mission. Initially the NEUDOSE mission had an active attitude control system, but with the lack of pointing requirements for the payload’s operation, and a stringent power budget, the active system was removed. A passive magnetic attitude control system was then explored as a solution to optimize communication, without adding much complexity or burden on the power budget

    EXOPEPTIDASE CATALYZED SITE-SPECIFIC BONDING OF SUPPORTS, LABELS AND BIOACTIVE AGENTS TO PROTEINS

    Get PDF
    The invention provides a means for attaching a label, support or bioactive agent to a protein with an exopeptidase at a site that is remote from the active site of the protein. More specifically the invention is directed to a method for the attachment of an amino acid, amine and alcohol nucleophile to the carboxyl terminus of a protein. In one embodiment, a labeled nucleophile is attached to a protein such as an antibody. In other embodiments, the invention is directed to a method for the attachment of a protein to an immobilization support and to a method for the attachment of a bioactive agent to a protein

    Optimizing information flow in small genetic networks. II: Feed forward interactions

    Get PDF
    Central to the functioning of a living cell is its ability to control the readout or expression of information encoded in the genome. In many cases, a single transcription factor protein activates or represses the expression of many genes. As the concentration of the transcription factor varies, the target genes thus undergo correlated changes, and this redundancy limits the ability of the cell to transmit information about input signals. We explore how interactions among the target genes can reduce this redundancy and optimize information transmission. Our discussion builds on recent work [Tkacik et al, Phys Rev E 80, 031920 (2009)], and there are connections to much earlier work on the role of lateral inhibition in enhancing the efficiency of information transmission in neural circuits; for simplicity we consider here the case where the interactions have a feed forward structure, with no loops. Even with this limitation, the networks that optimize information transmission have a structure reminiscent of the networks found in real biological systems
    corecore