10 research outputs found

    Does the Mutation Type Affect the Response to Cranial Vault Expansion in Children With Apert Syndrome?

    Get PDF
    Most cases of Apert syndrome are caused by mutations in the FGFR2 gene, either Ser252Trp or Pro253Arg. In these patients, over the last decades, spring-assisted posterior vault expansion (SA-PVE) has been the technique of choice for cranial vault expansion in the Craniofacial Unit of Great Ormond Street Hospital for Children (GOSH), London. The aim of this study was to investigate if there is a difference in preoperative intracranial volume (ICV) in patients with Apert syndrome with Ser252Trp or Pro253Arg mutation and whether these mutations affect the change in ICV achieved by SA-PVE. The GOSH craniofacial SA-PVE database was used to select patients with complete genetic testing and preoperative and postoperative computed tomography scans. ICV was calculated using FSL (FMRIB Analysis Group, Oxford) and adjusted based on Apert-specific growth curves. Sixteen patients were included with 8 having Ser252Trp mutation and 8 having Pro253Arg mutation. The mean preoperative adjusted computed tomography volume for patients in the Ser252Trp group was 1137.7 cm3 and in the Pro253Arg group was 1115.8 cm3 (P=1.00). There was a significant increase in ICV following SA-PVE in all patients (P<0.001) with no difference in mean change in ICV between the groups (P=0.51). Four (50%) patients with Ser252Trp mutation and 3 (37.5%) with Pro253Arg mutations required a second operation after primary SA-PVE. The results demonstrate that regardless of the mutation present, SA-PVE was successful in increasing ICV in patients with Apert syndrome and that a repeat volume expanding procedure was required by a similar number of patients in the 2 groups

    Electrophysiological and fundoscopic detection of intracranial hypertension in craniosynostosis

    Get PDF
    Aims: To assess the diagnostic accuracy of fundoscopy and visual evoked potentials (VEPs) in detecting intracranial hypertension (IH) in patients with craniosynostosis undergoing spring-assisted posterior vault expansion (sPVE). Methods: Children with craniosynostosis undergoing sPVE and 48-hour intracranial pressure (ICP) monitoring were included in this single-centre, retrospective, diagnostic accuracy study. Data for ICP, fundoscopy and VEPs were analysed. Primary outcome measures were papilloedema on fundoscopy, VEP assessments and IH, defined as mean ICP &gt; 20 mmHg. Diagnostic indices were calculated for fundoscopy and VEPs against IH. Secondary outcome measures included final visual outcomes. Results: Fundoscopic examinations were available for 35 children and isolated VEPs for 30 children, 22 of whom had at least three serial VEPs. Sensitivity was 32.1% for fundoscopy (95% confidence intervals [CI]: 15.9–52.4) and 58.3% for isolated VEPs (95% CI 36.6–77.9). Specificity for IH was 100% for fundoscopy (95% CI: 59.0–100) and 83.3% for isolated VEPs (95% CI: 35.9–99.6). Where longitudinal deterioration was suspected from some prVEPs but not corroborated by all, sensitivity increased to 70.6% (95% CI: 44.0–89.7), while specificity decreased to 60% (95% CI: 14.7–94.7). Where longitudinal deterioration was clinically significant, sensitivity decreased to 47.1% (23.0–72.2) and specificity increased to 100% (47.8–100). Median final BCVA was 0.24 logMAR (n = 36). UK driving standard BCVA was achieved by 26 patients (72.2%), defined as ≥0.30 logMAR in the better eye. Conclusion: Papilloedema present on fundoscopy reliably indicated IH, but its absence did not exclude IH. VEP testing boosted sensitivity at the expense of specificity, depending on method of analysis.</p

    Does the Mutation Type Affect the Response to Cranial Vault Expansion in Children With Apert Syndrome?

    No full text
    Most cases of Apert syndrome are caused by mutations in the FGFR2 gene, either Ser252Trp or Pro253Arg. In these patients, over the last decades, spring-assisted posterior vault expansion (SA-PVE) has been the technique of choice for cranial vault expansion in the Craniofacial Unit of Great Ormond Street Hospital for Children (GOSH), London. The aim of this study was to investigate if there is a difference in preoperative intracranial volume (ICV) in patients with Apert syndrome with Ser252Trp or Pro253Arg mutation and whether these mutations affect the change in ICV achieved by SA-PVE. The GOSH craniofacial SA-PVE database was used to select patients with complete genetic testing and preoperative and postoperative computed tomography scans. ICV was calculated using FSL (FMRIB Analysis Group, Oxford) and adjusted based on Apert-specific growth curves. Sixteen patients were included with 8 having Ser252Trp mutation and 8 having Pro253Arg mutation. The mean preoperative adjusted computed tomography volume for patients in the Ser252Trp group was 1137.7 cm3 and in the Pro253Arg group was 1115.8 cm3 (P=1.00). There was a significant increase in ICV following SA-PVE in all patients (P<0.001) with no difference in mean change in ICV between the groups (P=0.51). Four (50%) patients with Ser252Trp mutation and 3 (37.5%) with Pro253Arg mutations required a second operation after primary SA-PVE. The results demonstrate that regardless of the mutation present, SA-PVE was successful in increasing ICV in patients with Apert syndrome and that a repeat volume expanding procedure was required by a similar number of patients in the 2 groups

    Electrophysiological and fundoscopic detection of intracranial hypertension in craniosynostosis

    No full text
    Aims: To assess the diagnostic accuracy of fundoscopy and visual evoked potentials (VEPs) in detecting intracranial hypertension (IH) in patients with craniosynostosis undergoing spring-assisted posterior vault expansion (sPVE). Methods: Children with craniosynostosis undergoing sPVE and 48-hour intracranial pressure (ICP) monitoring were included in this single-centre, retrospective, diagnostic accuracy study. Data for ICP, fundoscopy and VEPs were analysed. Primary outcome measures were papilloedema on fundoscopy, VEP assessments and IH, defined as mean ICP &gt; 20 mmHg. Diagnostic indices were calculated for fundoscopy and VEPs against IH. Secondary outcome measures included final visual outcomes. Results: Fundoscopic examinations were available for 35 children and isolated VEPs for 30 children, 22 of whom had at least three serial VEPs. Sensitivity was 32.1% for fundoscopy (95% confidence intervals [CI]: 15.9–52.4) and 58.3% for isolated VEPs (95% CI 36.6–77.9). Specificity for IH was 100% for fundoscopy (95% CI: 59.0–100) and 83.3% for isolated VEPs (95% CI: 35.9–99.6). Where longitudinal deterioration was suspected from some prVEPs but not corroborated by all, sensitivity increased to 70.6% (95% CI: 44.0–89.7), while specificity decreased to 60% (95% CI: 14.7–94.7). Where longitudinal deterioration was clinically significant, sensitivity decreased to 47.1% (23.0–72.2) and specificity increased to 100% (47.8–100). Median final BCVA was 0.24 logMAR (n = 36). UK driving standard BCVA was achieved by 26 patients (72.2%), defined as ≥0.30 logMAR in the better eye. Conclusion: Papilloedema present on fundoscopy reliably indicated IH, but its absence did not exclude IH. VEP testing boosted sensitivity at the expense of specificity, depending on method of analysis.</p

    Spring-assisted posterior vault expansion-a single-centre experience of 200 cases

    Get PDF
    PURPOSE: Children affected by premature fusion of the cranial sutures due to craniosynostosis can present with raised intracranial pressure and (turri)brachycephalic head shapes that require surgical treatment. Spring-assisted posterior vault expansion (SA-PVE) is the surgical technique of choice at Great Ormond Street Hospital for Children (GOSH), London, UK. This study aims to report the SA-PVE clinical experience of GOSH to date. METHODS: A retrospective review was carried out including all SA-PVE cases performed at GOSH between 2008 and 2020. Demographic and clinical data were recorded including genetic diagnosis, craniofacial surgical history, surgical indication and assessment, age at time of surgery (spring insertion and removal), operative time, in-patient stay, blood transfusion requirements, additional/secondary (cranio)facial procedures, and complications. RESULTS: Between 2008 and 2020, 200 SA-PVEs were undertaken in 184 patients (61% male). The study population consisted of patients affected by syndromic (65%) and non-syndromic disorders. Concerns regarding raised intracranial pressure were the surgical driver in 75% of the cases, with the remainder operated for shape correction. Median age for SA-PVE was 19 months (range, 2–131). Average operative time for first SA-PVE was 150 min and 87 for spring removal. Median in-patient stay was 3 nights, and 88 patients received a mean of 204.4 ml of blood transfusion at time of spring insertion. A single SA-PVE sufficed in 156 patients (85%) to date (26 springs still in situ at time of this analysis); 16 patients underwent repeat SA-PVE, whilst 12 underwent rigid redo. A second SA-PVE was needed in significantly more cases when the first SA-PVE was performed before age 1 year. Complications occurred in 26 patients with a total of 32 events, including one death. Forty-one patients underwent fronto-orbital remodelling at spring removal and 22 required additional cranio(maxillo)facial procedures. CONCLUSIONS: Spring-assisted posterior vault expansion is a safe, efficient, and effective procedure based on our 12-year experience. Those that are treated early in life might require a repeat SA-PVE. Long-term follow-up is recommended as some would require additional craniomaxillofacial correction later in life
    corecore