303 research outputs found

    Modular Unmanned Aerial System with Multi-Mode Propulsion

    Get PDF
    A modular Unmanned Aerial System (UAS) includes an Unmanned Aerial Vehicle (UAV) parent module and UAV child modules. A main wing extends from a respective fuselage of the modules. The UAS includes docking mechanisms coupled to wingtips of the main wings. The child modules dock with the wingtips of the parent or an adjacent child module. Docking forms a linked-flight configuration, with undocking and separation from the parent or adjacent child module achieving an independent-flight configuration. The modules have booms arranged transverse to the main wings and parallel to the longitudinal axis, as well as front and rear rotors/propellers. The front and rear propellers have axes of rotation that are normal to a plane of the longitudinal axis in a vertical takeoff and landing (VTOL) configuration, with the axis of rotation of the rear propellers parallel to the longitudinal axis in a forward-flight configuration

    In a novel landscape, in the Eastern Cape, South Africa, what are the key vegetation resources that support livestock production?

    Get PDF
    The Tsitsa River is the largest remaining river that is without a dam in South Africa, and so the government has pledged to install two major dams for irrigation and hydroelectricity, under the Mzimvubu Water Project. These dams are intended to supply water and electricity to surrounding communities as well as the large neighbouring urban areas of Mthatha and Tsolo. However, large areas of the Tsitsa Catchment (~494 000 ha) are degraded, posing the possibility that if these dams were to be created, they would inevitably fill with sediment and silt within a few decades. To address these issues, the Tsitsa Project was established in 2014 to co-ordinate actions by government, developers and local communities in order to restore the landscape condition and prevent soil erosion, as well as to improve the livelihoods of the people who live there (Fabricius, Biggs, & Powell, 2016). Research into the landscape condition as well and the environmental interactions with local communities are therefore highly necessary in order to guide restoration practices to their best effect. The economic necessity for livestock production in the catchment indicates its urgent need for a better understanding of its current effects on the catchment landscape and vegetation. The overall goal of this study is to contribute to the knowledge needed to manage the area in a sustainable way. This paper will therefore examine the key vegetation resources that support livestock production in an area of the Tsitsa River Catchment, by describing the various types that exist, and by determining their relative production levels of usable livestock forage.Thesis (MSc) -- Faculty of Science, Institute for Water Research, 202

    Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz

    Get PDF
    In Drosophila oocytes, precise localization of the posterior determinant, Oskar, is required for posterior patterning. This precision is accomplished by a localization-dependent translational control mechanism that ensures translation of only correctly localized oskar transcripts. Although progress has been made in identifying localization factors and translational repressors of oskar, none of the known components of the oskar complex is required for both processes. Here, we report the identification of Cup as a novel component of the oskar RNP complex. cup is required for oskar mRNA localization and is necessary to recruit the plus end–directed microtubule transport factor Barentsz to the complex. Surprisingly, Cup is also required to repress the translation of oskar. Furthermore, eukaryotic initiation factor 4E (eIF4E) is localized within the oocyte in a cup-dependent manner and binds directly to Cup in vitro. Thus, Cup is a translational repressor of oskar that is required to assemble the oskar mRNA localization machinery. We propose that Cup coordinates localization with translation

    Technical Challenges Associated with In-Air Wingtip Docking of Aircraft in Forward Flight

    Get PDF
    Autonomous in-air wingtip docking of aircraft offers significant opportunity for system level performance gains for numerous aircraft applications. Several of the technical challenges facing wingtip docking of fixed-wing aircraft are addressed in this paper, including: close proximity aerodynamic coupling; mechanisms and operations for robust docking; and relative state estimation methods. A simulation framework considering the aerodynamics, rigid-body dynamics, and vehicle controls is developed and used to perform docking sensitivity studies for a system of two 5.5% scale NASA Generic Transport Model aircraft. Additionally, proof of- concept testing of a candidate docking mechanism designed to move the primary wingtip vortex inboard suggests the viability of such an approach for achieving robust docking

    Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    Get PDF
    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity
    • …
    corecore