5 research outputs found

    Stable Histone Adduction by 4‑Oxo-2-nonenal: A Potential Link between Oxidative Stress and Epigenetics

    No full text
    Lipid electrophiles modify cellular targets, altering their function. Here, we describe histones as major targets for modification by 4-oxo-2-nonenal, resulting in a stable Lys modification structurally analogous to other histone Lys acylations. Seven adducts were identified in chromatin isolated from intact cells: four 4-ketoamides to Lys and three Michael adducts to His. A 4-ketoamide adduct residing at H3K27 was identified in stimulated macrophages. Modification of histones H3 and H4 prevented nucleosome assembly

    Structure-Based Discovery of Potent, Orally Bioavailable Benzoxazepinone-Based WD Repeat Domain 5 Inhibitors

    No full text
    The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydro­isoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physico­chemical properties. We identified the 3,4-dihydrobenzo­[f]­[1,4]­oxazepin-5­(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physico­chemical properties compared to our best-in-class dihydro­isoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics

    Structure-Based Discovery of Potent, Orally Bioavailable Benzoxazepinone-Based WD Repeat Domain 5 Inhibitors

    No full text
    The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydro­isoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physico­chemical properties. We identified the 3,4-dihydrobenzo­[f]­[1,4]­oxazepin-5­(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physico­chemical properties compared to our best-in-class dihydro­isoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics

    Discovery of Potent 2‑Aryl-6,7-dihydro‑5<i>H</i>‑pyrrolo[1,2‑<i>a</i>]imidazoles as WDR5-WIN-Site Inhibitors Using Fragment-Based Methods and Structure-Based Design

    No full text
    WDR5 is a chromatin-regulatory scaffold protein overexpressed in various cancers and a potential epigenetic drug target for the treatment of mixed-lineage leukemia. Here, we describe the discovery of potent and selective WDR5-WIN-site inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified several chemically distinct hit series that bind to the WIN site within WDR5. Members of a 6,7-dihydro-5<i>H</i>-pyrrolo­[1,2-<i>a</i>]­imidazole fragment class were expanded using a structure-based design approach to arrive at lead compounds with dissociation constants <10 nM and micromolar cellular activity against an AML-leukemia cell line. These compounds represent starting points for the discovery of clinically useful WDR5 inhibitors for the treatment of cancer

    Discovery of Potent 2‑Aryl-6,7-dihydro‑5<i>H</i>‑pyrrolo[1,2‑<i>a</i>]imidazoles as WDR5-WIN-Site Inhibitors Using Fragment-Based Methods and Structure-Based Design

    No full text
    WDR5 is a chromatin-regulatory scaffold protein overexpressed in various cancers and a potential epigenetic drug target for the treatment of mixed-lineage leukemia. Here, we describe the discovery of potent and selective WDR5-WIN-site inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified several chemically distinct hit series that bind to the WIN site within WDR5. Members of a 6,7-dihydro-5<i>H</i>-pyrrolo­[1,2-<i>a</i>]­imidazole fragment class were expanded using a structure-based design approach to arrive at lead compounds with dissociation constants <10 nM and micromolar cellular activity against an AML-leukemia cell line. These compounds represent starting points for the discovery of clinically useful WDR5 inhibitors for the treatment of cancer
    corecore