14 research outputs found

    Acceptability and applicability of biometric iris scanning for the identification and follow up of highly mobile research participants living in fishing communities along the shores of Lake Victoria in Kenya, Tanzania, and Uganda.

    Get PDF
    BACKGROUND: Recruitment and retention of participants in research studies conducted in fishing communities remain a challenge because of population mobility. Reliable and acceptable methods for identifying and tracking participants taking part in HIV prevention and treatment research are needed. The study aims to assess the acceptability, and technical feasibility of iris scans as a biometric identification method for research participants in fishing communities. METHODS: This was a cross-sectional study conducted in eight fishing communities in Kenya, Tanzania, and Uganda, with follow-up after one month in a randomly selected subset of participants. All consenting participants had their iris scanned and then responded to the survey. RESULTS: 1,199 participants were recruited. The median age was 33 [Interquartile range (IQR) 24-42] years; 56% were women. The overall acceptability of iris scanning was 99%, and the success rate was 98%. Eighty one percent (n = 949) had a successful scan on first attempt, 116 (10%) on second and 113 (9%) after more than two attempts. A month later, 30% (n = 341) of participants were followed up. The acceptability of repeat iris scanning was 99% (n = 340). All participants who accepted repeat iris scanning had successful scans, with 307 (90%) scans succeeding on first attempt; 25 (7%) on second attempt, and 8 (2%) after several attempts. The main reason for refusing iris scanning was fear of possible side effects of the scan on the eyes or body. CONCLUSION: The acceptability and applicability of biometric iris scan as a technique for unique identification of research participants is high in fishing communities. However, successful use of the iris scanning technology in research will require education regarding the safety of the procedure

    Mechanosignaling from extracellular matrix fibronectin mediates endothelial cell responses to flow

    No full text
    Thesis (Ph. D.)--University of Rochester. Department of Biomedical Engineering, 2015.The endothelium is constantly exposed to various hemodynamic forces including blood pressure and fluid shear stress which aid in regulating vascular development and physiology. Fluid shear stress acts in a tangential direction on the apical surface of endothelial cells (EC) and both in vivo and in vitro studies have demonstrated that EC are responsive to this mechanical stimulus. One approach to determine the mechanosensitivity of the endothelium is to measure changes in cell morphology and cytoskeletal realignment in the direction of blood flow. The existing paradigm holds that this realignment is signaled directly from changes in perceived wall shear stress by cellular mechanotransducers linked to the cytoskeleton. Components of the glycocalyx, cell-matrix adhesions and cell-cell junctions have all been implicated as potential candidates in the process of mechanotransduction. The studies presented in this thesis sought to establish whether non-cellular components such as ECM fibronectin contributed to the observed mechanoresponses. In response to mechanical force, type III repeats (FNIII) within fibronectin are predicted to unfold and expose cryptic binding sites. Previous studies have shown that the biological activity of ECM fibronectin is localized, in part, to a matricryptic, heparin-binding site located within its 1st type III repeat (FNIII1H). A series of engineered fibronectin matrix mimetics that mimic the effects of ECM fibronectin on cells have been developed using recombinant protein production and purification. These mimetics couple the matricryptic, heparin-binding site (FNIII1H) to variants of the cell-binding domain (FNIII8-10) and provide us with the ability to study the effects of cryptic site signaling and various fibronectin conformations on endothelial cell responses to flow. Therefore, the overall goal of this work was to determine the role of ECM fibronectin (FN) and specific matricryptic signaling elements within the 1st type III repeat in EC responses to flow. We subjected human umbilical vein endothelial cells seeded on various fibronectin matrix mimetics to flow in perfusable microslides and measured the short-term (t ≤ 8 hrs.) shear stress-induced changes in endothelial cell morphology and stress fiber and cell alignment. In the 1st part of the study, we show that ECM fibronectin via a matricryptic, heparin-binding site within its 1st type III repeat mediates endothelial cell mechanosensitive responses when flow is used as mechanical stimulus. Specifically, the matricryptic, heparin-binding site (FNIII1H) mediates stress fiber realignment when cells are adhered via the integrin α5β1 but is not necessary when endothelial cells are adhered via the integrin αvβ3. In the 2nd part of the study, we show that endothelial cell-cell junctions are not required for FNIII1H-mediated stress fiber realignment but they are necessary when endothelial cell adhesion is via the integrin αvβ3. In subconfluence, we also demonstrate that cell, but not stress fiber alignment is independent of matricryptic site signaling. Lastly, we show that subconfluent endothelial cells utilize the matricryptic site and the integrin αvβ3 to mediate different morphological responses to flow. In summary, the studies presented in this thesis identify a pivotal role for fibronectin conformation and cryptic site signaling in mediating endothelial cell mechanosensitive responses to mechanical stimuli

    Screening and characterization of hypothetical proteins of Plasmodium falciparum as novel vaccine candidates in the fight against malaria using reverse vaccinology

    No full text
    Abstract Background Plasmodium falciparum is the most deadly and leading cause of morbidity and mortality in Africa. About 90% of all malaria deaths in the world today occur in Sub-Saharan Africa especially in children aged < 5 years. In 2018, it was reported that there were 228 million malaria cases that resulted in 405,000 deaths from 91 countries. Currently, a fully effective and long-lasting preventive malaria vaccine is still elusive therefore more effort is needed to identify better effective vaccine candidates. The aim of this study was to identify and characterize hypothetical proteins as vaccine candidates derived from Plasmodium falciparum 3D7 genome by reverse vaccinology. Results Of the 23 selected hypothetical proteins, 5 were predicted on the extracellular localization by WoLFPSORTv.2.0 program and all the 5 had less than 2 transmembrane regions that were predicted by TMHMMv2.0 and HMMTOP programs at default settings. Two out of the five proteins lacked secretory signal peptides as predicted by SignalP program. Among the 5 extracellular proteins, 3 were predicted to be antigenic by VaxiJen (score ≥ 0.5) and had negative GRAVY values ranging from − 1.156 to − 0.440. B cell epitope prediction by ABCpred and BCpred programs revealed a total of 15 antigenic epitopes. A total of 13 cytotoxic T cells were predicted from the 3 proteins using CTLPred online server. Only 2 out of the 13 CTL were antigenic, immunogenic, non-allergenic, and non-toxic using VaxiJen, IEDB, AllergenFp, and Toxinpred servers respectively in that order. Five HTL peptides from XP_001351030.1 protein are predicted inducers of all the three cytokines. STRING protein–protein network analysis of HPs revealed XP_001350955.1 closely interacts with nucleoside diphosphate kinase (PF13-0349) at 0.704, XP_001351030.1 interacts with male development protein1 (Mdv-1) at 0.645, and XP_001351047.1 with an uncharacterized protein (MAL8P1.53) at 0.400. Conclusion Reverse vaccinology is a promising strategy for the screening and identification of antigenic antigens with potential capacity to elicit cellular and humoral immune responses against P. falciparum infection. In this study, potential vaccine candidates of Plasmodium falciparum were identified and screened using standard bioinformatics tools. The vaccine candidates contained antigenic and immunogenic epitopes which could be considered for novel and effective vaccine targets. However, we strongly recommend in vivo and in vitro experiments to validate their immunogenicity and protective efficacy to completely decipher the vaccine targets against malaria

    2023-08 Train-the-Trainer pilot online

    No full text
    Online TTT pilot program of the Digital Research Academy, 28.08 - 01.09.202
    corecore