16 research outputs found

    Modulation of Bordetella pertussis by nicotinic acid

    Get PDF
    Summary available: p. i-ii

    Countering the Modern Metabolic Disease Rampage With Ancestral Endocannabinoid System Alignment

    Get PDF
    When primitive vertebrates evolved from ancestral members of the animal kingdom and acquired complex locomotive and neurological toolsets, a constant supply of energy became necessary for their continued survival. To help fulfill this need, the endocannabinoid (eCB) system transformed drastically with the addition of the cannabinoid-1 receptor (CB1R) to its gene repertoire. This established an eCB/CB1R signaling mechanism responsible for governing the whole organism's energy balance, with its activation triggering a shift toward energy intake and storage in the brain and the peripheral organs (i.e., liver and adipose). Although this function was of primal importance for humans during their pre-historic existence as hunter-gatherers, it became expendable following the successive lifestyle shifts of the Agricultural and Industrial Revolutions. Modernization of the world has further increased food availability and decreased energy expenditure, thus shifting the eCB/CB1R system into a state of hyperactive deregulated signaling that contributes to the 21st century metabolic disease pandemic. Studies from the literature supporting this perspective come from a variety of disciplines, including biochemistry, human medicine, evolutionary/comparative biology, anthropology, and developmental biology. Consideration of both biological and cultural evolution justifies the design of improved pharmacological treatments for obesity and Type 2 diabetes (T2D) that focus on peripheral CB1R antagonism. Blockade of peripheral CB1Rs, which universally promote energy conservation across the vertebrate lineage, represents an evolutionary medicine strategy for clinical management of present-day metabolic disorders

    Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling

    Get PDF
    AIMS: Fractalkine (CX3CL1) is a membrane-bound chemokine that signals through the G protein-coupled receptor CX3CR1 that is implicated in the development of atherosclerosis. We have previously reported that CX3CR1 is expressed by primary human coronary artery smooth muscle cells (CASMC), where it mediates chemotaxis towards CX3CL1. We sought to determine the effect of CX3CL1 on CASMC survival and proliferation and elucidate the signalling mechanisms involved. METHODS AND RESULTS: CX3CL1 significantly reduces staurosporine-induced apoptosis of CASMC, as quantified by caspase 3 immunostaining and Annexin-V flow cytometry. Furthermore, CX3CL1 is a potent mitogen for primary CASMC and induces phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, measured by western blotting. Inhibition of either ERK or phosphoinositide 3-kinase (PI3K) signalling abrogates proliferation, while only PI3K signalling is involved in the anti-apoptotic effects of CX3CL1. We describe a novel and specific small molecule antagonist of CX3CR1 (AZ12201182) which abrogates the mitogenic and anti-apoptotic effects of CX3CL1 on CASMC. Pharmacological inhibition of the epidermal growth factor receptor (EGFR) blocks CASMC survival and DNA synthesis, indicating a previously undocumented role for EGFR signalling in response to CX3CL1 involving release of a soluble EGFR ligand. Specifically, CX3CL1 induces shedding of epiregulin and increases epiregulin mRNA expression 20-fold within 2 h. Finally, antibody neutralization of epiregulin abrogates the mitogenic effect of CX3CL1. CONCLUSION: We have demonstrated two novel and important functions of CX3CL1 on primary human SMCs: anti-apoptosis and proliferation, both mediated via epiregulin-induced EGFR signalling. Our data have important implications in vascular pathologies including atherosclerosis, restenosis, and transplant accelerated arteriosclerosis, where the balance of SMC proliferation and apoptosis critically determines both plaque stability and vessel stenosis

    The life and work of John Flynn

    No full text
    corecore