371 research outputs found

    Anisotropy from SKS splitting across the Pacific-North America plate boundary offshore southern California

    Get PDF
    SKS arrivals from ocean bottom seismometer (OBS) data from an offshore southern California deployment are analysed for shear wave splitting. The project involved 34 OBSs deployed for 12 months in a region extending up to 500 km west of the coastline into the oceanic Pacific plate. The measurement process consisted of removing the effects of anisotropy using a range of values for splitting fast directions and delay times to minimize energy along the transverse seismometer axis. Computed splitting parameters are unexpectedly similar to onland parameters, exhibiting WSW–ENE fast polarization directions and delays between 0.8 and 1.8 s, even for oceanic plate sites. This is the first SKS splitting study to extend across the entire boundary between the North America and Pacific plates, into the oceanic part of the Pacific plate. The splitting results show that the fast direction of anisotropy on the Pacific plate does not align with absolute plate motion (APM), and they extend the trend of anisotropy in southern California an additional 500 km west, well onto the oceanic Pacific plate. We model the finite strain and anisotropy within the asthenosphere associated with density–buoyancy driven mantle flow and the effects of APM. In the absence of plate motion effects, such buoyancy driven mantle flow would be NE-directed beneath the Pacific plate observations. The best-fit patterns of mantle flow are inferred from the tomography-based models that show primary influences from foundering higher-density zones associated with the history of subduction beneath North America. The new offshore SKS measurements, when combined with measurements onshore within the plate boundary zone, indicate that dramatic lateral variations in density-driven upper-mantle flow are required from offshore California into the plate boundary zone in California and western Basin and Range

    Influence of Stream Location in a Drainage Network on the Index of Biotic Integrity

    Full text link
    The index of biotic integrity (IBI) has become a widely used tool for assessing the condition of stream fish communities and the overall biological status of streams. Because the location of a stream in a drainage network can influence the species richness offish communities and because species richness is an important component of the IBI, we examined the influence of stream spatial location on the IBI. We found that IBI scores for headwater streams in three Illinois drainage basins were significantly lower than those calculated for tributary streams of similar size connecting directly to larger streams. This difference in IBI was related to the increased species richness and to a greater number of sucker and darter species in tributaries that drain into larger, main‐channel streams. Because of the influence of tributary location on the IBI, expected values for headwater tributary streams should be developed independently from those developed for main‐channel tributary streams. Failure to do so can result in a substantial underestimation of the IBI of headwater tributary streams or an overestimation of main‐channel tributaries.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142315/1/tafs0635.pd

    Electron-lattice relaxation, and soliton structures and their interactions in polyenes

    Full text link
    Density matrix renormalisation group calculations of a suitably parametrised model of long polyenes (polyacetylene oligomers), which incorporates both long range Coulomb interactions and adiabatic lattice relaxation, are presented. The triplet and 2Ag states are found to have a 2-soliton and 4-soliton form, respectively, both with large relaxation energies. The 1Bu state forms an exciton-polaron and has a very small relaxation energy. The relaxed energy of the 2Ag state lies below that of the 1Bu state. The soliton/anti-soliton pairs are bound.Comment: RevTeX, 5 pages, 4 eps figures included using epsf. To appear in Physical Review Letters. Fig. 1 fixed u

    A Case Study of Low-Mass Star Formation

    Full text link
    This article synthesizes observational data from an extensive program aimed toward a comprehensive understanding of star formation in a low-mass star-forming molecular cloud. New observations and published data spanning from the centimeter wave band to the near infrared reveal the high and low density molecular gas, dust, and pre-main sequence stars in L1551.Comment: 24 pages, 21 figures, ApJS accepte

    Anisotropy from SKS splitting across the Pacific-North America plate boundary offshore southern California

    Get PDF
    SKS arrivals from ocean bottom seismometer (OBS) data from an offshore southern California deployment are analysed for shear wave splitting. The project involved 34 OBSs deployed for 12 months in a region extending up to 500 km west of the coastline into the oceanic Pacific plate. The measurement process consisted of removing the effects of anisotropy using a range of values for splitting fast directions and delay times to minimize energy along the transverse seismometer axis. Computed splitting parameters are unexpectedly similar to onland parameters, exhibiting WSW–ENE fast polarization directions and delays between 0.8 and 1.8 s, even for oceanic plate sites. This is the first SKS splitting study to extend across the entire boundary between the North America and Pacific plates, into the oceanic part of the Pacific plate. The splitting results show that the fast direction of anisotropy on the Pacific plate does not align with absolute plate motion (APM), and they extend the trend of anisotropy in southern California an additional 500 km west, well onto the oceanic Pacific plate. We model the finite strain and anisotropy within the asthenosphere associated with density–buoyancy driven mantle flow and the effects of APM. In the absence of plate motion effects, such buoyancy driven mantle flow would be NE-directed beneath the Pacific plate observations. The best-fit patterns of mantle flow are inferred from the tomography-based models that show primary influences from foundering higher-density zones associated with the history of subduction beneath North America. The new offshore SKS measurements, when combined with measurements onshore within the plate boundary zone, indicate that dramatic lateral variations in density-driven upper-mantle flow are required from offshore California into the plate boundary zone in California and western Basin and Range

    Large scale numerical investigation of excited states in poly(phenylene)

    Full text link
    A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps

    Images of Crust Beneath Southern California Will Aid Study of Earthquakes and Their Effects

    Get PDF
    The Whittier Narrows earthquake of 1987 and the Northridge earthquake of 1991 highlighted the earthquake hazards associated with buried faults in the Los Angeles region. A more thorough knowledge of the subsurface structure of southern California is needed to reveal these and other buried faults and to aid us in understanding how the earthquake-producing machinery works in this region

    Excited states of linear polyenes

    Full text link
    We present density matrix renormalisation group calculations of the Pariser- Parr-Pople-Peierls model of linear polyenes within the adiabatic approximation. We calculate the vertical and relaxed transition energies, and relaxed geometries for various excitations on long chains. The triplet (3Bu+) and even- parity singlet (2Ag+) states have a 2-soliton and 4-soliton form, respectively, both with large relaxation energies. The dipole-allowed (1Bu-) state forms an exciton-polaron and has a very small relaxation energy. The relaxed energy of the 2Ag+ state lies below that of the 1Bu- state. We observe an attraction between the soliton-antisoliton pairs in the 2Ag+ state. The calculated excitation energies agree well with the observed values for polyene oligomers; the agreement with polyacetylene thin films is less good, and we comment on the possible sources of the discrepencies. The photoinduced absorption is interpreted. The spin-spin correlation function shows that the unpaired spins coincide with the geometrical soliton positions. We study the roles of electron-electron interactions and electron-lattice coupling in determining the excitation energies and soliton structures. The electronic interactions play the key role in determining the ground state dimerisation and the excited state transition energies.Comment: LaTeX, 15 pages, 9 figure

    Exoplanet Diversity in the Era of Space-based Direct Imaging Missions

    Full text link
    This whitepaper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planet's atmosphere that classifies them with respect to planetary radius and incident stellar flux.Comment: A white paper submitted to the National Academy of Sciences Exoplanet Science Strateg

    Understanding earthquake hazards in southern California - the "LARSE" project - working toward a safer future for Los Angeles

    Get PDF
    The Los Angeles region is underlain by a network of active faults, including many that are deep and do not break the Earth’s surface. These hidden faults include the previously unknown one responsible for the devastating January 1994 Northridge earthquake, the costliest quake in U.S. history. So that structures can be built or strengthened to withstand the quakes that are certain in the future, the Los Angeles Region Seismic Experiment (LARSE) is locating hidden earthquake hazards beneath the region to help scientists determine where the strongest shaking will occur
    • 

    corecore