840 research outputs found

    Spatially Distinct Neutrophil Responses within the Inflammatory Lesions of Pneumonic Plague

    Get PDF
    ABSTRACT During pneumonic plague, the bacterium Yersinia pestis elicits the development of inflammatory lung lesions that continue to expand throughout infection. This lesion development and persistence are poorly understood. Here, we examine spatially distinct regions of lung lesions using laser capture microdissection and transcriptome sequencing (RNA-seq) analysis to identify transcriptional differences between lesion microenvironments. We show that cellular pathways involved in leukocyte migration and apoptosis are downregulated in the center of lung lesions compared to the periphery. Probing for the bacterial factor(s) important for the alteration in neutrophil survival, we show both in vitro and in vivo that Y. pestis increases neutrophil survival in a manner that is dependent on the type III secretion system effector YopM. This research explores the complexity of spatially distinct host-microbe interactions and emphasizes the importance of cell relevance in assays in order to fully understand Y. pestis virulence. IMPORTANCE Yersinia pestis is a high-priority pathogen and continues to cause outbreaks worldwide. The ability of Y. pestis to be transmitted via respiratory droplets and its history of weaponization has led to its classification as a select agent most likely to be used as a biological weapon. Unrestricted bacterial growth during the initial preinflammatory phase primes patients to be infectious once disease symptoms begin in the proinflammatory phase, and the rapid disease progression can lead to death before Y. pestis infection can be diagnosed and treated. Using in vivo analyses and focusing on relevant cell types during pneumonic plague infection, we can identify host pathways that may be manipulated to extend the treatment window for pneumonic plague patients

    In Vivo Transcriptional Profiling of Yersinia pestis Reveals a Novel Bacterial Mediator of Pulmonary Inflammation

    Get PDF
    ABSTRACTInhalation of Yersinia pestis results in primary pneumonic plague, a highly lethal and rapidly progressing necrotizing pneumonia. The disease begins with a period of extensive bacterial replication in the absence of disease symptoms, followed by the sudden onset of inflammatory responses that ultimately prove fatal. Very little is known about the bacterial and host factors that contribute to the rapid biphasic progression of pneumonic plague. In this work, we analyzed the in vivo transcription kinetics of 288 bacterial open reading frames previously shown by microarray analysis to be dynamically regulated in the lung. Using this approach combined with bacterial genetics, we were able to identify five Y.pestis genes that contribute to the development of pneumonic plague. Deletion of one of these genes, ybtX, did not alter bacterial survival but attenuated host inflammatory responses during late-stage disease. Deletion of ybtX in another lethal respiratory pathogen, Klebsiella pneumoniae, also resulted in diminished host inflammation during infection. Thus, our in vivo transcriptional screen has identified an important inflammatory mediator that is common to two Gram-negative bacterial pathogens that cause severe pneumonia.IMPORTANCEYersiniapestis is responsible for at least three major pandemics, most notably the Black Death of the Middle Ages. Due to its pandemic potential, ease of dissemination by aerosolization, and a history of its weaponization, Y.pestis is categorized by the Centers for Disease Control and Prevention as a tier 1 select agent most likely to be used as a biological weapon. To date, there is no licensed vaccine against Y.pestis. Importantly, an early “silent” phase followed by the rapid onset of nondescript influenza-like symptoms makes timely treatment of pneumonic plague difficult. A more detailed understanding of the bacterial and host factors that contribute to pathogenesis is essential to understanding the progression of pneumonic plague and developing or enhancing treatment options

    METHOD OF MAKING QUASICRYSTAL ALLOY POWDER, PROTECTIVECOATINGS AND ARTICLES

    Get PDF
    A method of making quasicrystalline alloy particulates wherein an alloy is superheated and the meltis atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture

    Testing the Unitarity of the CKM Matrix with a Space-Based Neutron Decay Experiment

    Full text link
    If the Standard Model is correct, and fundamental fermions exist only in the three generations, then the CKM matrix should be unitary. However, there remains a question over a deviation from unitarity from the value of the neutron lifetime. We discuss a simple space-based experiment that, at an orbit height of 500 km above Earth, would measure the kinetic-energy, solid-angle, flux spectrum of gravitationally bound neutrons (kinetic energy K<0.606 eV at this altitude). The difference between the energy spectrum of neutrons that come up from the Earth's atmosphere and that of the undecayed neutrons that return back down to the Earth would yield a measurement of the neutron lifetime. This measurement would be free of the systematics of laboratory experiments. A package of mass <25<25 kg could provide a 10^{-3} precision in two years.Comment: 10 pages, 4 figures. Revised and updated for publicatio

    In Memoriam: Paul R. Rice

    Get PDF

    Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells.

    Get PDF
    Cultured hamster trachea epithelial cells were selected as an in vitro model system to study Bordetella pertussis in the respiratory tract. DNA synthesis by serum-stimulated tracheal cells, in contrast to other cell types tested, was inhibited by the supernatant from log-phase B. pertussis broth cultures. A sensitive microassay with these tracheal cells permitted the development of a chromatographic purification scheme based on aggregation of the biological activity under salt-free conditions. The active fraction from this first stage of purification caused a dose-dependent inhibition of DNA synthesis without a similar effect on RNA or protein synthesis. Organ cultures of hamster tracheal rings, when exposed to this partially purified fraction, developed epithelial cytopathology comparable to that seen during B. pertussis infection. Ciliary activity showed and eventually ceased as ciliated cells were extruded from the ring, leaving an intact but mostly nonciliated epithelium. Further purification of this biological activity was achieved with preparative-scale high-voltage paper electrophoresis. Based on ninhydrin staining and the radioactive profile of material purified from radiolabeled B. pertussis cultures, four fractions were eluted from the paper by descending chromatography. Only component B caused a dose-dependent inhibition of cultured tracheal cell DNA synthesis and epithelial cytopathology in tracheal rings. Combination experiments also demonstrated enhanced inhibition by component B in the presence of component G (oxidized glutathione), a copurifying molecule from the growth medium. Amino acid analysis (five residues), glycine (two residues), cysteine (two residues), and diaminopimelic acid (one residue), as well as muramic acid and glucosamine

    Generation of IL-23 Producing Dendritic Cells (DCs) by Airborne Fungi Regulates Fungal Pathogenicity via the Induction of TH-17 Responses

    Get PDF
    Interleukin-17 (IL-17) producing T helper cells (TH-17) comprise a newly recognized T cell subset with an emerging role in adaptive immunity to a variety of fungi. Whether different airborne fungi trigger a common signaling pathway for TH-17 induction, and whether this ability is related to the inherent pathogenic behavior of each fungus is currently unknown. Here we show that, as opposed to primary pathogenic fungi (Histoplasma capsulatum), opportunistic fungal pathogens (Aspergillus and Rhizopus) trigger a common innate sensing pathway in human dendritic cells (DCs) that results in robust production of IL-23 and drives TH-17 responses. This response requires activation of dectin-1 by the fungal cell wall polysaccharide b-glucan that is selectively exposed during the invasive growth of opportunistic fungi. Notably, unmasking of b-glucan in the cell wall of a mutant of Histoplasma not only abrogates the pathogenicity of this fungus, but also triggers the induction of IL-23 producing DCs. Thus, b-glucan exposure in the fungal cell wall is essential for the induction of IL-23/TH-17 axis and may represent a key factor that regulates protective immunity to opportunistic but not pathogenic fungi

    The Bivariate Rogers-Szeg\"{o} Polynomials

    Full text link
    We present an operator approach to deriving Mehler's formula and the Rogers formula for the bivariate Rogers-Szeg\"{o} polynomials hn(x,yq)h_n(x,y|q). The proof of Mehler's formula can be considered as a new approach to the nonsymmetric Poisson kernel formula for the continuous big qq-Hermite polynomials Hn(x;aq)H_n(x;a|q) due to Askey, Rahman and Suslov. Mehler's formula for hn(x,yq)h_n(x,y|q) involves a 3ϕ2{}_3\phi_2 sum and the Rogers formula involves a 2ϕ1{}_2\phi_1 sum. The proofs of these results are based on parameter augmentation with respect to the qq-exponential operator and the homogeneous qq-shift operator in two variables. By extending recent results on the Rogers-Szeg\"{o} polynomials hn(xq)h_n(x|q) due to Hou, Lascoux and Mu, we obtain another Rogers-type formula for hn(x,yq)h_n(x,y|q). Finally, we give a change of base formula for Hn(x;aq)H_n(x;a|q) which can be used to evaluate some integrals by using the Askey-Wilson integral.Comment: 16 pages, revised version, to appear in J. Phys. A: Math. Theo
    corecore