2,951 research outputs found

    The sub prime crisis : implications for emerging markets

    Get PDF
    This paper discusses some of the key characteristics of the U.S. subprime mortgage boom and bust, contrasts them with characteristics of emerging mortgage markets, and makes recommendations for emerging market policy makers. The crisis has raised questions in the minds of many as to the wisdom of extending mortgage lending to low and moderate income households. It is important to note, however,that prior to the growth of subprime lending in the 1990s, U.S. mortgage markets already reached low and moderate-income households without taking large risks or suffering large losses. In contrast, in most emerging markets, mortgage finance is a luxury good, restricted to upper income households. As policy makers in emerging market seek to move lenders down market, they should adopt policies that include a variety of financing methods and should allow for rental or purchase as a function of the financial capacity of the household. Securitization remains a useful tool when developed in the context of well-aligned incentives and oversight. It is possible to extend mortgage lending down market without repeating the mistakes of the subprime boom and bust.Debt Markets,,Access to Finance,Bankruptcy and Resolution of Financial Distress,Emerging Markets

    The In-Situ Resource Utilization Project Under the New Exploration Enterprise

    Get PDF
    The In Situ Resource Utilization Project under the Exploration Technology Development Program has been investing in technologies to produce Oxygen from the regolith of the moon for the last few years. Much of this work was demonstrated in a lunar analog field demonstration in February of 2010. This paper will provide an overview of the key technologies demonstrated at the field demonstration will be discussed a long with the changes expected in the ISRU project as a result of the new vision for Space Exploration proposed by the President and enacted by the Congress in the NASA Authorization Act of2010

    Progress Made in Lunar In-Situ Resource Utilization Under NASA's Exploration Technology and Development Program

    Get PDF
    Incorporation of In-Situ Resource Utilization (ISRU) and the production of mission critical consumables for 9 propulsion, power, and life support into mission architectures can greatly reduce the mass, cost, and risk of missions 10 leading to a sustainable and affordable approach to human exploration beyond Earth. ISRU and its products can 11 also greatly affect how other exploration systems are developed, including determining which technologies are 12 important or enabling. While the concept of lunar ISRU has existed for over 40 years, the technologies and systems 13 had not progressed much past simple laboratory proof-of-concept tests. With the release of the Vision for Space 14 Exploration in 2004 with the goal of harnessing the Moon.s resources, NASA initiated the ISRU Project in the 15 Exploration Technology Development Program (ETDP) to develop the technologies and systems needed to meet 16 this goal. In the five years of work in the ISRU Project, significant advancements and accomplishments occurred in 17 several important areas of lunar ISRU. Also, two analog field tests held in Hawaii in 2008 and 2010 demonstrated 18 all the steps in ISRU capabilities required along with the integration of ISRU products and hardware with 19 propulsion, power, and cryogenic storage systems. This paper will review the scope of the ISRU Project in the 20 ETDP, ISRU incorporation and development strategies utilized by the ISRU Project, and ISRU development and 21 test accomplishments over the five years of funded project activity

    Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs

    Get PDF
    The NASA project to develop In-Situ Resource Utilization (ISRU) technologies, in partnership with commercial and international collaborators, has achieved full system demonstrations of oxygen production using native regolith simulants. These demonstrations included robotic extraction of material from the terrain, sealed encapsulation of material in a pressurized reactor; chemical extraction of oxygen from the material in the form of water, and the electrolysis of water into oxygen and hydrogen for storage and reuse. These successes have provided growing confidence in the prospects of ISRU oxygen production as a credible source for critical mission consumables in preparation for and during crewed missions to the moon and other destinations. Other ISRU processes, especially relevant to early lunar exploration scenarios, have also been shown to be practical, including the extraction of subsurface volatiles, especially water, and the thermal processing of surface materials for civil engineering uses and for thermal energy storage. This paper describes these recent achievements and current NASA ISRU development and demonstration activity. The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables; and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example. the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review the results of four analog field tests (Moses Lake in 6/08, Mauna Kea in 11/08. Flagstaff in 9/09; and Mauna Kea in 1/10) that have begun the process of integrating ISRU into robotic and human exploration systems and missions, and propose future ISRU-related analog field test activities that can be performed in collaboration with international space agencies

    NASA's In-Situ Resource Utilization Project: Current Accomplishments and Exciting Future Plans

    Get PDF
    The utilization of Space resources has been identified in publications for over 40 years for its potential as a "game changing" technology for the human exploration of Space. It is called "game changing" because of the mass leverage possible when local resources at the exploration destination arc used to reduce or even eliminate resources that are brought from the Earth. NASA, under the Exploration Technology Development Program has made significant investments in the development of Space resource utilization technologies as a part of the In-Situ Resource Utilization (ISRU) project. Over the last four years, the ISRU project has taken what was essentially an academic topic with lots of experimentation but little engineering and produced near-full-scale systems that have been demonstrated. In 2008 & again in early 2010, systems that could produce oxygen from lunar soils (or their terrestrial analogs) were tested at a lunar analog site on a volcano in Hawaii. These demonstrations included collaborations with International Partners that made significant contributions to the tests. The proposed federal budget for Fiscal Year 2011 encourages the continued development and demonstration of ISRU. However it goes beyond what the project is currently doing and directs that the scope of the project be expanded to cover destinations throughout the inner solar system with the potential for night demonstrations. This paper will briefly cover the past accomplishments of the ISRU project then move to a di scussion of the plans for the project's future as NASA moves to explore a new paradigm for Space Exploration that includes orbital fuel depots and even refueling on other planetary bodies in the solar system

    Sternal non-union in a professional hockey player: considerations for return to play

    Get PDF
    We describe a healthy 40-year old professional hockey player with an asymptomatic sternal non-union following aortic root surgery. The purpose of this case report is to make orthopedic surgeons aware of the possibility of this complication following sternotomy, and to discuss the considerations involved in return to play in contact sports. We will discuss our work-up, evaluation, and management of a sternal non-union in a professional athlete. Patient's consent has been obtained

    Materials for engine applications above 3000 deg F: An overview

    Get PDF
    Materials for future generations of aeropropulsion systems will be required to perform at ever-increasing temperatures and have properties superior to the current state of the art. Improved engine efficiency can reduce specific fuel consumption and thus increase range and reduce operating costs. The ultimate payoff gain is expected to come when materials are developed which can perform without cooling at gas temperatures to 2200 C (4000 F). An overview is presented of materials for applications above 1650 C (3000 F), some pertinent physical property data, and the rationale used: (1) to arrive at recommendations of material systems that qualify for further investigation, and (2) to develop a proposed plan of research. From an analysis of available thermochemical data it was included that such materials systems must be composed of oxide ceramics. The required structural integrity will be achieved by developing these materials into fiber-reinforced ceramic composites

    Changes in Expired End-Tidal Carbon Dioxide During Cardiopulmonary Resuscitation in Dogs: A Prognostic Guide for Resuscitation Efforts

    Get PDF
    Expired end-tidal carbon dioxide (PCO2) measurements made during cardiopulmonary resuscitation have correlated with cardiac output and coronary perfusion pressure when wide ranges of blood flow are included. The utility of such measurements for predicting resuscitation outcome during the low flow state associated with closed chest cardiopulmonary resuscitation remains uncertain. Expired end-tidal PCO2 and coronary perfusion pressures were measured in 15 mongrel dogs undergoing 15 min of closed chest cardiopulmonary resuscitation after a 3 min period of untreated ventricular fibrillation. In six successfully resuscitated dogs, the mean expired end-tidal PCO2 was significantly higher than that in nine nonresuscitated dogs only after 14 min of cardiopulmonary resuscitation (6.2 ± 1.2 versus 3.4 ± 0.8 mmHg; p \u3c 0.05). No differences in expired end-tidal PCO2 values were found at 2, 7 or 12 min of cardiopulmonary resuscitation. A significant decline in end-tidal PCO2 levels during the resuscitation effort was seen in the nonresuscitated group (from 6.3 ± 0.8 to 3.4 ± 0.8 mmHg; p \u3c 0.05); while the successfully resuscitated group had constant PCO2 levels throughout the 15 min of cardiac arrest (ranging from 6.8 ± 1.1 to 6.2 ± 1.2 mmHg). Changes in expired PCO2 levels during cardiopulmonary resuscitation may be a useful noninvasive predictor of successful resuscitation and survival from cardiac arrest

    Prospecting for Polar Volatiles: Results from the Resolve Field

    Get PDF
    Both the Moon and Mercury evidently host ice and other volatile compounds in cold traps at the planets poles. Determining the form, spatial distribution, and abundance of these volatiles at the lunar poles can help us understand how and when they were delivered and emplaced. This bears directly on the delivery of water and prebiotic compounds to the inner planets over the solar system s history, and also informs plans for utilizing the volatiles as resources for sustained human exploration as well as the commercial development of space. Temperature models and orbital data suggest near-surface volatile concentrations may exist at polar locations not strictly in permanent shadow. Remote operation of a robotic lunar rover mission for the 7-10 days of available sunlight would permit key questions to be answered. But such a short, quick-tempo mission has unique challenges and requires a new concept of operations. Both science and rover operations decisionmaking must be done in real time, requiring immediate situational awareness, data analysis, and decision support tools
    • …
    corecore