1,430 research outputs found
NonQCD contributions to heavy quark masses and sensitivity to Higgs mass
We find that if the Higgs mass is close to its present experimental lower
limit (100 GeV),Yukawa interactions in the quark-Higgs sector can make
substantial contributions to the heavy quark MS masses.Comment: 16 pages, 1 figure. Fixed a few typos (eqs (7),(34)
The automation of a stellar proper motion measuring system Annual report, 1 Jul. 1966 - 30 Jun. 1967
Design and operation of automated stellar proper motion measuring syste
From arbitrariness to ambiguities in the evaluation of perturbative physical amplitudes and their symmetry relations
A very general calculational strategy is applied to the evaluation of the
divergent physical amplitudes which are typical of perturbative calculations.
With this approach in the final results all the intrinsic arbitrariness of the
calculations due to the divergent character is still present. We show that by
using the symmetry properties as a guide to search for the (compulsory) choices
in such a way as to avoid ambiguities, a deep and clear understanding of the
role of regularization methods emerges. Requiring then an universal point of
view for the problem, as allowed by our approach, very interesting conclusions
can be stated about the possible justifications of most intriguing aspect of
the perturbative calculations in quantum field theory: the triangle anomalies.Comment: 16 pages, no figure
Anomalies in Ward Identities for Three-Point Functions Revisited
A general calculational method is applied to investigate symmetry relations
among divergent amplitudes in a free fermion model. A very traditional work on
this subject is revisited. A systematic study of one, two and three point
functions associated to scalar, pseudoscalar, vector and axial-vector densities
is performed. The divergent content of the amplitudes are left in terms of five
basic objects (external momentum independent). No specific assumptions about a
regulator is adopted in the calculations. All ambiguities and symmetry
violating terms are shown to be associated with only three combinations of the
basic divergent objects. Our final results can be mapped in the corresponding
Dimensional Regularization calculations (in cases where this technique could be
applied) or in those of Gertsein and Jackiw which we will show in detail. The
results emerging from our general approach allow us to extract, in a natural
way, a set of reasonable conditions (e.g. crucial for QED consistency) that
could lead us to obtain all Ward Identities satisfied. Consequently, we
conclude that the traditional approach used to justify the famous triangular
anomalies in perturbative calculations could be questionable. An alternative
point of view, dismissed of ambiguities, which lead to a correct description of
the associated phenomenology, is pointed out.Comment: 26 pages, Revtex, revised version, Refs. adde
Nonperturbative Light-Front QCD
In this work the determination of low-energy bound states in Quantum
Chromodynamics is recast so that it is linked to a weak-coupling problem. This
allows one to approach the solution with the same techniques which solve
Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and
many-body quantum mechanics. The key to eliminating necessarily nonperturbative
effects is the use of a bare Hamiltonian in which quarks and gluons have
nonzero constituent masses rather than the zero masses of the current picture.
The use of constituent masses cuts off the growth of the running coupling
constant and makes it possible that the running coupling never leaves the
perturbative domain. For stabilization purposes an artificial potential is
added to the Hamiltonian, but with a coefficient that vanishes at the physical
value of the coupling constant. The weak-coupling approach potentially
reconciles the simplicity of the Constituent Quark Model with the complexities
of Quantum Chromodynamics. The penalty for achieving this perturbative picture
is the necessity of formulating the dynamics of QCD in light-front coordinates
and of dealing with the complexities of renormalization which such a
formulation entails. We describe the renormalization process first using a
qualitative phase space cell analysis, and we then set up a precise similarity
renormalization scheme with cutoffs on constituent momenta and exhibit
calculations to second order. We outline further computations that remain to be
carried out. There is an initial nonperturbative but nonrelativistic
calculation of the hadronic masses that determines the artificial potential,
with binding energies required to be fourth order in the coupling as in QED.
Next there is a calculation of the leading radiative corrections to these
masses, which requires our renormalization program. Then the real struggle of
finding the right extensions to perturbation theory to study the
strong-coupling behavior of bound states can begin.Comment: 56 pages (REVTEX), Report OSU-NT-94-28. (figures not included,
available via anaonymous ftp from pacific.mps.ohio-state.edu in subdirectory
pub/infolight/qcd
Competing electric and magnetic excitations in backward electron scattering from heavy deformed nuclei
Important contributions to the cross sections of
low-lying orbital excitations are found in heavy deformed nuclei, arising
from the small energy separation between the two excitations with and 1, respectively. They are studied microscopically in QRPA using
DWBA. The accompanying response is negligible at small momentum transfer
but contributes substantially to the cross sections measured at for fm ( MeV)
and leads to a very good agreement with experiment. The electric response is of
longitudinal type for but becomes almost purely
transverse for larger backward angles. The transverse response
remains comparable with the response for fm
( MeV) and even dominant for MeV. This happens even at
large backward angles , where the dominance is
limited to the lower region.Comment: RevTeX, 19 pages, 8 figures included Accepted for publication in Phys
Rev
The heavy top quark in the two Higgs doublet model
Constraints on the two Higgs doublet model are presented, assuming a top mass
of 174 17 GeV. We concentrate primarily on the ``type II'' model, where
up--type quarks receive their mass from one Higgs doublet, and down--type
quarks receive their mass from the second doublet. High energy constraints
derived from the mass, the full width of the and the partial
width of the are combined with low energy constraints from , and - mixing to
determine the experimentally favored configurations of the model. This
combination of observables rules out small charged Higgs masses and small
values of , and provides some information about the neutral Higgs
masses and the mixing angle . In particular, constraints derived from
the parameter rule out configurations where the charged Higgs is much
heavier or much lighter than the neutral Higgses. We discuss a scenario where
is enhanced relative to the standard model result,
which unfortunately is on the verge of being ruled out by the combination of
and parameter constraints. Implications for
various extensions of the standard model are briefly discussed.Comment: 26 page
The Dark Side of the Electroweak Phase Transition
Recent data from cosmic ray experiments may be explained by a new GeV scale
of physics. In addition the fine-tuning of supersymmetric models may be
alleviated by new O(GeV) states into which the Higgs boson could decay. The
presence of these new, light states can affect early universe cosmology. We
explore the consequences of a light (~ GeV) scalar on the electroweak phase
transition. We find that trilinear interactions between the light state and the
Higgs can allow a first order electroweak phase transition and a Higgs mass
consistent with experimental bounds, which may allow electroweak baryogenesis
to explain the cosmological baryon asymmetry. We show, within the context of a
specific supersymmetric model, how the physics responsible for the first order
phase transition may also be responsible for the recent cosmic ray excesses of
PAMELA, FERMI etc. We consider the production of gravity waves from this
transition and the possible detectability at LISA and BBO
The Impact of an Intervention to Improve Malaria Care in Public Health Centers on Health Indicators of Children in Tororo, Uganda (PRIME): A Cluster-Randomized Trial.
Optimizing quality of care for malaria and other febrile illnesses is a complex challenge of major public health importance. To evaluate the impact of an intervention aiming to improve malaria case management on the health of community children, a cluster-randomized trial was conducted from 2010-2013 in Tororo, Uganda, where malaria transmission is high. Twenty public health centers were included; 10 were randomized in a 1:1 ratio to intervention or control. Households within 2 km of health centers provided the sampling frame for the evaluation. The PRIME intervention included training in fever case management using malaria rapid diagnostic tests (mRDTs), patient-centered services, and health center management; plus provision of mRDTs and artemether-lumefantrine. Cross-sectional community surveys were conducted at baseline and endline (N = 8,766), and a cohort of children was followed for approximately 18 months (N = 992). The primary outcome was prevalence of anemia (hemoglobin < 11.0 g/dL) in children under 5 years of age in the final community survey. The intervention was delivered successfully; however, no differences in prevalence of anemia or parasitemia were observed between the study arms in the final community survey or the cohort. In the final survey, prevalence of anemia in children under 5 years of age was 62.5% in the intervention versus 63.1% in control (adjusted risk ratio = 1.01; 95% confidence interval = 0.91-1.13; P = 0.82). The PRIME intervention, focusing on training and commodities, did not produce the expected health benefits in community children in Tororo. This challenges common assumptions that improving quality of care and access to malaria diagnostics will yield health gains
Constraints on the Mass and Mixing of the 4th Generation Quark From Direct CP Violation and Rare K Decays
We investigate the for in a
sequential fourth generation model. By giving the basic formulae for
in this model, we analyze the numerical results
which are dependent of and imaginary part of the fourth CKM
factor, (or and the
fourth generation CKM matrix phase ). We find that, unlike the SM, when
taking the central values of all parameters for ,
the values of can easily fit to the current
experimental data for all values of hadronic matrix elements estimated from
various approaches. Also, we show that the experimental values of
and rare K decays can provide a strong constraint
on both mass and mixing of the fourth generation quark. When taking the values
of hadronic matrix elements from the lattice or 1/N expansion calculations, a
large region of the up-type quark mass is excluded.Comment: 18 pages, 4 eps figure
- …