2,507 research outputs found

    Magnetic field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at v=5/2

    Full text link
    We show that the resistance of the v=5/2 quantum Hall state, confined to an interferometer, oscillates with magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of different sizes, resistance oscillations at v=7/3 and integer filling factors have the magnetic field period expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3,3,1) state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-type non-Abelian state there would be a rapid oscillation associated with the "even-odd effect" and a slower one associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of the quasiparticle braiding statistics. Our measurements at v=5/2 are consistent with the latter.Comment: 10 pages, 8 figures, includes Supplemental Material

    Measurement of filling factor 5/2 quasiparticle interference: observation of charge e/4 and e/2 period oscillations

    Full text link
    A standing problem in low dimensional electron systems is the nature of the 5/2 fractional quantum Hall state: its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be employed to manipulate and measure quantum Hall edge excitations. Here we use a small area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharanov-Bohm effect are observed for integer and fractional quantum Hall states (filling factors 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these as charge calibrations, at 5/2 filling factor and at lowest temperatures periodic transmission through the device consistent with quasiparticle charge e/4 is observed. The principal finding of this work is that in addtion to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge, or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations.Comment: version 3 contains additional data beyond version 2, 26 pages, 8 figures PNAS 081259910

    Beyond the Fermi Liquid Paradigm: Hidden Fermi Liquids

    Full text link
    An intense investigation of possible non-Fermi liquid states of matter has been inspired by two of the most intriguing phenomena discovered in the past quarter century, namely high temperature superconductivity and the fractional quantum Hall effect. Despite enormous conceptual strides, these two fields have developed largely along separate paths. Two widely employed theories are the resonating valence bond theory for high temperature superconductivity and the composite fermion theory for the fractional quantum Hall effect. The goal of this "perspective" article is to note that they subscribe to a common underlying paradigm: they both connect these exotic quantum liquids to certain ordinary Fermi liquids residing in unphysical Hilbert spaces. Such a relation yields numerous nontrivial experimental consequences, exposing these theories to rigorous and definitive tests.Comment: perspective articl

    Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding

    Full text link
    The quantum Hall states at filling factors ν=5/2\nu=5/2 and 7/27/2 are expected to have Abelian charge e/2e/2 quasiparticles and non-Abelian charge e/4e/4 quasiparticles. For the first time we report experimental evidence for the non-Abelian nature of excitations at ν=7/2\nu=7/2 and examine the fermion parity, a topological quantum number of an even number of non-Abelian quasiparticles, by measuring resistance oscillations as a function of magnetic field in Fabry-P\'erot interferometers using new high purity heterostructures. The phase of observed e/4e/4 oscillations is reproducible and stable over long times (hours) near ν=5/2\nu=5/2 and 7/27/2, indicating stability of the fermion parity. When phase fluctuations are observed, they are predominantly π\pi phase flips, consistent with fermion parity change. We also examine lower-frequency oscillations attributable to Abelian interference processes in both states. Taken together, these results constitute new evidence for the non-Abelian nature of e/4e/4 quasiparticles; the observed life-time of their combined fermion parity further strengthens the case for their utility for topological quantum computation.Comment: A significantly revised version; 54 double-column pages containing 14 pages of main text + Supplementary Materials. The figures, which include a number of new figures, are now incorporated into the tex

    Experimental Demonstration of Fermi Surface Effects at Filling Factor 5/2

    Full text link
    Using small wavelength surface acoustic waves (SAW) on ultra-high mobility heterostructures, Fermi surface properties are detected at 5/2 filling factor at temperatures higher than those at which the quantum Hall state forms. An enhanced conductivity is observed at 5/2 by employing sub 0.5 micron wavelength SAW, indicating a quasiparticle mean-free-path substantially smaller than that in the lowest Landau level. These findings are consistent with the presence of a filled Fermi sea of composite fermions, which may pair at lower temperatures to form the 5/2 ground state.Comment: 11 pages, 4 figure

    Current Path Properties of the Transport Anisotropy at Filling Factor 9/2

    Full text link
    To establish the presence and orientation of the proposed striped phase in ultra-high mobility 2D electron systems at filling factor 9/2, current path transport properties are determined by varying the separation and allignment of current and voltage contacts. Contacts alligned orthogonal to the proposed intrinsic striped phase produce voltages consistent with current spreading along the stripes; current driven along the proposed stripe direction results in voltages consistent with channeling along the stripes. Direct comparison is made to current spreading/channeling properties of artificially induced 1D charge modulated systems, which indicates the 9/2 direction.Comment: 10 pages, 4 figure
    • …
    corecore