722 research outputs found
Specific heat and validity of quasiparticle approximation in the half-filled Landau level
We calculate the specific heat of composite fermion system in the half-filled
Landau level. Two different methods are used to examine validity of the
quasiparticle approximation when the two-body interaction is given by (). The singular part of the specific heat
is calculated from the free energy of the gauge field, which is compared with
the specific heat calculated from the quasiparticle approximation via the
singular self-energy correction due to the gauge field fluctuations. It turns
out that two results are in general different and they coincide only for the
case of the Coulomb interaction (). This result supports the fact
that the quasiparticle approximation is valid only for the case of the Coulomb
interaction. It is emphasized that this result is obtained by looking at a
gauge-invariant quantity -- the specific heat.Comment: 8 pages, Revte
Formin-based control of the actin cytoskeleton during cytokinesis
Cytokinesis, the terminal event in the canonical cell cycle, physically separates daughter cells following mitosis. For cleavage to occur in many eukaryotes, a cytokinetic ring must assemble and constrict between divided genomes. Although dozens of different molecules localize to and participate within the cytokinetic ring, the core machinery comprises linear actin filaments. Accordingly, formins, which nucleate and elongate F-actin (filamentous actin) for the cytokinetic ring, are required for cytokinesis in diverse species. In the present article, we discuss specific modes of formin-based actin regulation during cell division and highlight emerging mechanisms and questions on this topic. © 2013 Biochemical Society
Instantons and the spectral function of electrons in the half-filled Landau level
We calculate the instanton-anti-instanton action in
the gauge theory of the half-filled Landau level. It is found that for a class of interactions between electrons. This means that the instanton-anti-instanton
pairs are confining so that a well defined `charged' composite fermion can
exist. It is also shown that can be used to calculate
the spectral function of electrons from the microscopic theory within a
semiclassical approximation. The resulting spectral function varies as at low
energies.Comment: 13 pages, Plain Tex, MIT-CMT-APR-9
Recommended from our members
Abnormalities at chromosome region 3p12–14 characterize clear cell renal carcinoma
In an effort to determine whether or not any characteristic chromosomal abnormalities exist in renal cancer, cytogenetic findings were correlated with tumor histology in nine cases of renal adenocarcinoma. Metaphase preparations adequate for analysis were obtained from cultures harvested between day 3 and day 21. Model chromosome number was diploid in three cases, hypodiploid in three, and hyperdiploid in the remaining three. One clear cell adenocarcinoma failed to reveal any chromosomal abnormality. Two tumors, a tubular/papillary
carcinoma and an acinar/papillary carcinima, showed the clonal abnormalities
del(1)(p21),+2,+7,+8,+12,+13,+16,+17,-21 and t(2;lO)(q14-21;q26),+7q,+11q,-18,
respectively. Interestingly, five of six clear cell tumors studied had clonal abnormalities affecting the short arm of chromosome #3 in the 3p12-21 region, and in the remaining case, of 15 karyotyped metaphases suitable for interpretation, one showed a deletion in 3p. These data indicate that clear cell carcinoma of the kidney may be associated with a nonrandom chromosomal abnormality involving the 3p12-14 region
Weiss Oscillations in Surface Acoustic Wave Propagation
The interaction of a surface acoustic wave (SAW) with a a two-dimensional
electron gas in a periodic electric potential and a classical magnetic field is
considered. We calculate the attenuation of the SAW and its velocity change and
show that these quantities exhibit Weiss oscillations.Comment: 4 pages REVTEX, 2 figures included as eps file
Quantum Boltzmann equation of composite fermions interacting with a gauge field
We derive the quantum Boltzmann equation (QBE) of composite fermions at/near
the state using the non-equilibrium Green's function technique. The
lowest order perturbative correction to the self-energy due to the strong gauge
field fluctuations suggests that there is no well defined
Landau-quasi-particle. Therefore, we cannot assume the existence of the
Landau-quasi-particles {\it a priori} in the derivation of the QBE. Using an
alternative formulation, we derive the QBE for the generalized Fermi surface
displacement which corresponds to the local variation of the chemical potential
in momentum space. {}From this QBE, one can understand in a unified fashion the
Fermi-liquid behaviors of the density-density and the current-current
correlation functions at (in the long wave length and the low
frequency limits) and the singular behavior of the energy gap obtained from the
finite temperature activation behavior of the compressibility near .
Implications of these results to the recent experiments are also discussed.Comment: 44 pages, Plain Tex, 5 figures (ps files) available upon reques
Influence of gauge-field fluctuations on composite fermions near the half-filled state
Taking into account the transverse gauge field fluctuations, which interact
with composite fermions, we examine the finite temperature compressibility of
the fermions as a function of an effective magnetic field ( is the density of electrons) near the half-filled state. It is
shown that, after including the lowest order gauge field correction, the
compressibility goes as for , where . Here we assume that the interaction between
the fermions is given by , where is a dependent constant. This result can be
interpreted as a divergent correction to the activation energy gap and is
consistent with the divergent renormalization of the effective mass of the
composite fermions.Comment: Plain Tex, 24 pages, 5 figures available upon reques
The Haldane-Rezayi Quantum Hall State and Magnetic Flux
We consider the general abelian background configurations for the
Haldane-Rezayi quantum Hall state. We determine the stable configurations to be
the ones with the spontaneous flux of with .
This gives the physical mechanism by which the edge theory of the state becomes
identical to the one for the 331 state. It also provides a new experimental
consequence which can be tested in the enigmatic plateau in a single
layer system.Comment: RevTex, 5 pages, 2 figures. v2:minor corrections. v4: published
version. Discussion on the thermodynamic limit adde
Surface acoustic wave attenuation by a two-dimensional electron gas in a strong magnetic field
The propagation of a surface acoustic wave (SAW) on GaAs/AlGaAs
heterostructures is studied in the case where the two-dimensional electron gas
(2DEG) is subject to a strong magnetic field and a smooth random potential with
correlation length Lambda and amplitude Delta. The electron wave functions are
described in a quasiclassical picture using results of percolation theory for
two-dimensional systems. In accordance with the experimental situation, Lambda
is assumed to be much smaller than the sound wavelength 2*pi/q. This restricts
the absorption of surface phonons at a filling factor \bar{\nu} approx 1/2 to
electrons occupying extended trajectories of fractal structure. Both
piezoelectric and deformation potential interactions of surface acoustic
phonons with electrons are considered and the corresponding interaction
vertices are derived. These vertices are found to differ from those valid for
three-dimensional bulk phonon systems with respect to the phonon wave vector
dependence. We derive the appropriate dielectric function varepsilon(omega,q)
to describe the effect of screening on the electron-phonon coupling. In the low
temperature, high frequency regime T << Delta (omega_q*Lambda
/v_D)^{alpha/2/nu}, where omega_q is the SAW frequency and v_D is the electron
drift velocity, both the attenuation coefficient Gamma and varepsilon(omega,q)
are independent of temperature. The classical percolation indices give
alpha/2/nu=3/7. The width of the region where a strong absorption of the SAW
occurs is found to be given by the scaling law |Delta \bar{\nu}| approx
(omega_q*Lambda/v_D)^{alpha/2/nu}. The dependence of the electron-phonon
coupling and the screening due to the 2DEG on the filling factor leads to a
double-peak structure for Gamma(\bar{\nu}).Comment: 17 pages, 3 Postscript figures, minor changes mad
Beyond the random phase approximation in the Singwi-Sj\"olander theory of the half-filled Landau level
We study the Chern-Simons system and consider a self-consistent
field theory of the Singwi-Sj\"olander type which goes beyond the random phase
approximation (RPA). By considering the Heisenberg equation of motion for the
longitudinal momentum operator, we are able to show that the zero-frequency
density-density response function vanishes linearly in long wavelength limit
independent of any approximation. From this analysis, we derive a consistency
condition for a decoupling of the equal time density-density and
density-momentum correlation functions. By using the Heisenberg equation of
motion of the Wigner distribution function with a decoupling of the correlation
functions which respects this consistency condition, we calculate the response
functions of the system. In our scheme, we get a density-density
response function which vanishes linearly in the Coulomb case for
zero-frequency in the long wavelength limit. Furthermore, we derive the
compressibility, and the Landau energy as well as the Coulomb energy. These
energies are in better agreement to numerical and exact results, respectively,
than the energies calculated in the RPA.Comment: 9 Revtex pages, 4 eps figures, typos correcte
- …