480 research outputs found

    Temporal behavior of the plasma edge density throughout the L-H transition in ASDEX Upgrade

    No full text

    Pedestal and Er profile evolution during an edge localized mode cycle at ASDEX Upgrade

    Get PDF
    The upgrade of the edge charge exchange recombination spectroscopy diagnostic at ASDEX Upgrade has enabled highly spatially resolved me asurements of the impurity ion dynamics during an edge-localized mode cycle ( ELM ) with unprecedented temp oral resolution, i.e. 65 μ s. The increase of transport during an ELM induces a relaxation of the ion, electron edge gradients in impurity density and fl ows. Detailed characterization of the recovery of the edge temperature gradients reveals a difference in the ion and electron channe l: the maximum ion temperature gradient T i is re-established on similar timescales as n e , which is faster than the recovery of T e .Afterthe clamping of the maximum gradient, T i and T e at the pedestal top continue to rise up to the next ELM while n e stays constant which means that the temperatur e pedestal and the resu lting pedestal pressure widen until the next ELM. The edge radial electric fi eld E r at the ELM crash is found to reduce to typical L-mode values and its ma ximum recovers to its pre-ELM conditions on a similar time scale as for n e and T i . Within the uncertainties, the measurements of E r align with their neoclassical predictions E r,neo for most of the ELM cycle, thus indicating that E r is dominated by collisional processes. However, between 2 and 4 ms af ter the ELM crash, other contributions to E B ́ fl ow, e.g. zonal fl ows or ion orbit effects, could not be excluded within the uncertainties.European Commission (EUROfusion 633053

    Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak

    Full text link
    Access conditions for full suppression of Edge Localised Modes (ELMs) by Magnetic Perturbations (MP) in low density high confinement mode (H-mode) plasmas are studied in the ASDEX Upgrade tokamak. The main empirical requirements for full ELM suppression in our experiments are: 1. The poloidal spectrum of the MP must be aligned for best plasma response from weakly stable kink-modes, which amplify the perturbation, 2. The plasma edge density must be below a critical value, 3.3×10193.3 \times 10^{19}~m3^{-3}. The edge collisionality is in the range νi=0.150.42\nu^*_i = 0.15-0.42 (ions) and νe=0.150.25\nu^*_e = 0.15-0.25 (electrons). However, our data does not show that the edge collisionality is the critical parameter that governs access to ELM suppression. 3. The pedestal pressure must be kept sufficiently low to avoid destabilisation of small ELMs. This requirement implies a systematic reduction of pedestal pressure of typically 30\% compared to unmitigated ELMy H-mode in otherwise similar plasmas. 4. The edge safety factor q95q_{95} lies within a certain window. Within the range probed so far, q95=3.54.2q_{95}=3.5-4.2, one such window, q95=3.573.95q_{95}=3.57-3.95 has been identified. Within the range of plasma rotation encountered so far, no apparent threshold of plasma rotation for ELM suppression is found. This includes cases with large cross field electron flow in the entire pedestal region, for which two-fluid MHD models predict that the resistive plasma response to the applied MP is shielded

    Connecting the global H-mode power threshold to the local radial electric field at ASDEX Upgrade

    Get PDF
    The relation between the macroscopic input power required at ASDEX Upgrade to access the H-mode Pthr and the microscopic E x B shear has been investigated via fast charge-exchange recombination spectroscopy (CXRS) measurements at various toroidal magnetic fields, different electron densities, and in both hydrogen and deuterium plasmas. For the H-mode onset, a threshold in the v E x B minimum, an approximation of the E x B shear, has been found. This identifies v E x B and not Er as the important player for the L-H transition. A database of measurements including CXRS, Doppler reflectometry measurements and comparison to neoclassical approximations shows a threshold v E x B of (6.7 ± 1.0) km/s ranging over a factor of three in Pthr. Using these findings, a simple derivation of the Pthr scaling is proposed giving a physics interpretation of the Bt, density and surface dependence of Pthr.EUROfusion Consortium Grant Agreement No. 63305

    Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak

    Get PDF
    Access conditions for full suppression of edge localised modes (ELMs) by magnetic perturbations (MP) in low density high confinement mode (H-mode) plasmas are studied in the ASDEX Upgrade tokamak. The main empirical requirements for full ELM suppression in our experiments are: 1. The poloidal spectrum of the MP must be aligned for best plasma response from weakly stable kink-modes, which amplify the perturbation, 2. The plasma edge density must be below a critical value, m−3. The edge collisionality is in the range (ions) and (electrons). However, our data does not show that the edge collisionality is the critical parameter that governs access to ELM suppression. 3. The pedestal pressure must be kept sufficiently low to avoid destabilisation of small ELMs. This requirement implies a systematic reduction of pedestal pressure of typically 30% compared to unmitigated ELMy H-mode in otherwise similar plasmas. 4. The edge safety factor q95 lies within a certain window. Within the range probed so far, , one such window, has been identified. Within the range of plasma rotation encountered so far, no apparent threshold of plasma rotation for ELM suppression is found. This includes cases with large cross field electron flow in the entire pedestal region.EUROfusion Consortium 63305

    I-mode studies at ASDEX Upgrade: L-I and I-H transitions, pedestal and confinement properties

    Get PDF
    The I-mode is a plasma regime obtained when the usual L-H power threshold is high, e.g. with unfavourable ion B ∇ direction. It is characterised by the development of a temperature pedestal while the density remains roughly as in the L-mode. This leads to a confinement improvement above the L-mode level which can sometimes reach H-mode values. This regime, already obtained in the ASDEX Upgrade tokamak about two decades ago, has been studied again since 2009 taking advantage of the development of new diagnostics and heating possibilities. The I-mode in ASDEX Upgrade has been achieved with different heating methods such as NBI, ECRH and ICRF. The I-mode properties, power threshold, pedestal characteristics and confinement, are independent of the heating method. The power required at the L-I transition exhibits an offset linear density dependence but, in contrast to the L-H threshold, depends weakly on the magnetic field. The L-I transition seems to be mainly determined by the edge pressure gradient and the comparison between ECRH and NBI induced L-I transitions suggests that the ion channel plays a key role. The I-mode often evolves gradually over a few confinement times until the transition to H-mode which offers a very interesting situation to study the transport reduction and its link with the pedestal formation. Exploratory discharges in which n = 2 magnetic perturbations have been applied indicate that these can lead to an increase of the I-mode power threshold by flattening the edge pressure at fixed heating input power: more heating power is necessary to restore the required edge pressure gradient. Finally, the confinement properties of the I-mode are discussed in detail.European Commission (EUROfusion 633053
    corecore