165 research outputs found

    On the Response of an OST to a Point-like Heat Source

    Full text link
    A new technique of superconducting cavity diagnostics has been introduced by D. Hartrill at Cornell University, Ithaca, USA. Oscillating Superleak Transducers (OST) detect the heat transferred from a cavity's quench point via "Second Sound" through the superfluid He bath, needed to cool the superconducting cavity. The observed response of an OST is a complex, but reproducible pattern of oscillations. A small helium evaporation cryostat was built which allows the investigation of the response of an OST in greater detail. The distance between a point-like electrical heater and the OST can be varied. The OST can be mounted either parallel or perpendicular to the plate, housing the heat source. If the artificial quench-point releases an amount of energy compatible to a real quench spot on a cavity's surface, the OST signal starts with a negative pulse, which is usually strong enough to allow automatic detection. Furthermore, the reflection of the Second Sound on the wall is observed. A reflection coefficient R = 0.39 +- 0.05 of the glass wall is measured. This excludes a strong influence of multiple reflections in the complex OST response. Fourier analyses show three main frequencies, found in all OST spectra. They can be interpreted as modes of an oscillating circular membrane.Comment: 10 pages, 16 figure

    Intersubband gain in a Bloch oscillator and Quantum cascade laser

    Full text link
    The link between the inversion gain of quantum cascade structures and the Bloch gain in periodic superlattices is presented. The proposed theoretical model based on the density matrix formalism is able to treat the gain mechanism of the Bloch oscillator and Quantum cascade laser on the same footing by taking into account in-plane momentum relaxation. The model predicts a dispersive contribution in addition to the (usual) population-inversion-dependent intersubband gain in quantum cascade structures and - in the absence of inversion - provides the quantum mechanical description for the dispersive gain in superlattices. It corroborates the predictions of the semi-classical miniband picture, according to which gain is predicted for photon energies lower than the Bloch oscillation frequency, whereas net absorption is expected at higher photon energies, as a description which is valid in the high-temperature limit. A red-shift of the amplified emission with respect to the resonant transition energy results from the dispersive gain contribution in any intersubband transition, for which the population inversion is small.Comment: 10 pages, 6 figure

    Coherently averaged dual-comb spectroscopy with a low-noise and high-power free-running gigahertz dual-comb laser

    Full text link
    We present a new type of dual optical frequency comb source capable of scaling applications to high measurement speeds while combining high average power, ultra-low noise operation, and a compact setup. Our approach is based on a diode-pumped solid-state laser cavity which includes an intracavity biprism operated at Brewster angle to generate two spatially-separated modes with highly correlated properties. The 15-cm-long cavity uses an Yb:CALGO crystal and a SESAM as an end mirror to generate more than 3 W average power per comb, below 80 fs pulse duration, a repetition rate of 1.03 GHz, and a continuously tunable repetition rate difference up to 27 kHz. We carefully investigate the coherence properties of the dual-comb by a series of heterodyne measurements, revealing several important features: (1) ultra-low jitter on the uncorrelated part of the timing noise; (2) the radio frequency comb lines of the interferograms are fully resolved in free-running operation; (3) we validate that through a simple measurement of the interferograms we can determine the fluctuations of the phase of all the radio frequency comb lines; (4) this phase information is used in a post-processing routine to perform coherently averaged dual-comb spectroscopy of acetylene (C2H2) over long timescales. Our results represent a powerful and general approach to dual-comb applications by combining low noise and high power operation directly from a highly compact laser oscillator

    Effect of continuous positive airway pressure therapy on a large hemangioma complicated with obstructive sleep apnea syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hemangiomas involving the upper airway can be an uncommon cause of obstructive sleep apnea syndrome.</p> <p>Case presentation</p> <p>A 26-year-old Caucasian man with a known history of a large hemangioma of his head and neck presented with sleep-disordered breathing to the sleep unit of our hospital. Severe obstructive sleep apnea syndrome was revealed on polysomnography. Nasal continuous positive airway pressure was implemented effectively, reducing daytime hypersomnolence and significantly improving sleep parameters. After three years of adherent use, the patient remains in a good condition and the hemangioma is stable.</p> <p>Conclusion</p> <p>Application of continuous positive airway pressure can be an effective treatment for patients with obstructive sleep apnea syndrome complicated with vascular tumors. Periodic follow-up of these patients is necessary, as little is known about the long-term effects of continuous positive airway pressure therapy.</p

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Thermodynamic Properties of the Anisotropic Frustrated Spin-chain Compound Linarite PbCuSO4_4(OH)2_2

    Full text link
    We present a comprehensive macroscopic thermodynamic study of the quasi-one-dimensional (1D) s=12s = \tfrac{1}{2} frustrated spin-chain system linarite. Susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements were performed to characterize the magnetic phase diagram. In particular, for magnetic fields along the b axis five different magnetic regions have been detected, some of them exhibiting short-range-order effects. The experimental magnetic entropy and magnetization are compared to a theoretical modelling of these quantities using DMRG and TMRG approaches. Within the framework of a purely 1D isotropic model Hamiltonian, only a qualitative agreement between theory and the experimental data can be achieved. Instead, it is demonstrated that a significant symmetric anisotropic exchange of about 10% is necessary to account for the basic experimental observations, including the 3D saturation field, and which in turn might stabilize a triatic (three-magnon) multipolar phase.Comment: 20 pages, 17 figure

    Complex Field Induced States in Linarite PbCuSO4 OH 2 with a Variety of High Order Exotic Spin Density Wave States

    Get PDF
    Low temperature neutron diffraction and NMR studies of field induced phases in linarite are presented for magnetic fields H amp; 8741;b axis. A two step spin flop transition is observed, as well as a transition transforming a helical magnetic ground state into an unusual magnetic phase with sine wave modulated moments amp; 8741; H. An effective J 1 amp; 8722;J 2 single chain model with a magnetization dependent frustration ratio amp; 945;ef f amp; 8722;J 2 J 1 is proposed. The latter is governed by skew interchain couplings and shifted to the vicinity of the ferromagnetic critical point. It explains qualitatively the observation of a rich variety of exotic longitudinal collinear spin density wave, SDWp, states 9 amp; 8805; p amp; 8805;

    Picosecond ultrasonics with a free-running dual-comb laser

    Get PDF
    We present a free-running 80-MHz dual-comb polarization-multiplexed solid-state laser which delivers 1.8 W of average power with 110-fs pulse duration per comb. With a high-sensitivity pump-probe setup, we apply this free-running dual-comb laser to picosecond ultrasonic measurements. The ultrasonic signatures in a semiconductor multi-quantum-well structure originating from the quantum wells and superlattice regions are revealed and discussed. We further demonstrate ultrasonic measurements on a thin-film metalized sample and compare these measurements to ones obtained with a pair of locked femtosecond lasers. Our data show that a free-running dual-comb laser is well-suited for picosecond ultrasonic measurements and thus it offers a significant reduction in complexity and cost for this widely adopted non-destructive testing techniqu
    • …
    corecore