314 research outputs found

    Relativistic Heavy Ion Collider

    Full text link

    LBRS Cryo-assemblies - D3 dipoles

    Get PDF

    Field quality in the twin aperture D2 dipoles for LHC under asymmetric excitation

    Get PDF
    Twin aperture D2 magnets are one of the several types of dipoles to be built by BNL for the interaction regions of LHC. To minimize the number of dipole correctors required in the interaction regions, D2 will also be used as part of the steering system. Consequently, the operating fields in the two apertures may differ by up to ~10at 7 TeV operation and ~33at injection in order to compensate for the strengths of the correctors that would otherwise be required. Such asymmetric excitation of the two apertures may induce undesirable field harmonics. The saturation behavior of various harmonics is studied using POISSON and OPERA-2D. It is shown that the changes in harmonics resulting from the anticipated asymmetry are within tolerable limits. (2 refs)

    Magnets for RHIC

    Get PDF

    Cooling Scheme for BNL-Built LHC Magnets

    Get PDF
    Brookhaven National Laboratory (BNL) will provide four types of magnets, identified as D1, D2, D3 and D4, for the Insertion Regions of the Large Hadron Collider (LHC) as part of an international collaboration. These magnets utilize the dipole coil design of the Relativistic Heavy Ion Collider (RHIC) at BNL, for performance, reliability and cost reasons. The magnet cold mass and cryostat have been designed to ensure that these magnets meet all performance requirements in the LHC sloped tunnel using its cryogenic distribution system. D1 is a RHIC arc dipole magnet. D2 and D4 are 2-in-1 magnets, two coils in one cold mass, in a cryostat. D3 is a 1-in-1 magnet, one coil in one cold mass, with two cold masses side by side in a cryostat. D1 and D4 will be cooled by helium II at 1.9 K using a bayonet heat exchanger similar to the main cooling system of LHC. D2 and D3 will be cooled by liquid helium at 4.5 K using a Two-Feed scheme. A detailed description of the cooling scheme for these magnets, their cryostats, special features and interfaces with the LHC distribution system is given

    No interactions between heparin and atacicept, an antagonist of B cell survival cytokines.

    Get PDF
    The TNF family ligands, B cell activating factor of the TNF family (BAFF, also known as B lymphocyte stimulator, BLyS) and a proliferation-inducing ligand (APRIL), share the transmembrane activator and calcium-modulator and cyclophilin ligand (CAML)-interactor (TACI) as one of their common receptors. Atacicept, a chimeric recombinant TACI/IgG1-Fc fusion protein, inhibits both ligands. TACI and APRIL also bind to proteoglycans and to heparin that is structurally related to proteoglycans. It is unknown whether the portion of TACI contained in atacicept can bind directly to proteoglycans, or indirectly via APRIL, and whether this could interfere with the anti-coagulant properties of heparin. Binding of atacicept and APRIL to proteoglycan-positive cells was measured by FACS. Activities of heparin and atacicept were measured with activated factor Xa inhibition and cell-based assays. Effects of heparin on circulating atacicept was monitored in mice. Atacicept did not bind to proteoglycan-positive cells, but when complexed to APRIL could do so indirectly via APRIL. Multimers of atacicept obtained after exposure to cysteine or BAFF 60-mer bound directly to proteoglycans. Atacicept alone, or in complex with APRIL, or in a multimeric form did not interfere with heparin activity in vitro. Conversely, heparin did not influence inhibition of BAFF and APRIL by atacicept and did not change circulating levels of atacicept. Lack of detectable interference of APRIL-bound or free atacicept on heparin activity makes it unlikely that atacicept at therapeutic doses will interfere with the function of heparin in vivo

    BAFF 60-mer, and Differential BAFF 60-mer Dissociating Activities in Human Serum, Cord Blood and Cerebrospinal Fluid.

    Get PDF
    B cell activation factor of the TNF family (BAFF/BLyS), an essential B cell survival factor of which circulating levels are elevated in several autoimmune disorders, is targeted in the clinic for the treatment of systemic lupus erythematosus (SLE). The soluble form of BAFF can exist as 3-mer, or as 60-mer that results from the ordered assembly of twenty 3-mers and that can be obtained from naturally cleaved membrane-bound BAFF or made as a recombinant protein. However, which forms of soluble BAFF exist and act in humans is unclear. In this study, BAFF 3-mer and 60-mer in biological fluids were characterized for size, activity and response to specific stimulators or inhibitors of BAFF. Human cerebrospinal fluids (CSF) from patients with multiple sclerosis and adult human sera contained exclusively BAFF 3-mer in these assays, also when BAFF concentrations were moderately SLE or highly (BAFFR-deficient individual) increased. Human sera, but not CSF, contained a high molecular weight, saturable activity that dissociated preformed recombinant BAFF 60-mer into 3-mer. This activity was lower in cord blood. Cord blood displayed BAFF levels 10-fold higher than in adults and consistently contained a fair proportion of active high molecular weight BAFF able to dissociate into 3-mer but not endowed with all properties of recombinant BAFF 60-mer. If BAFF 60-mer is produced in humans, it is dissociated, or at least attenuated in the circulation
    corecore