34 research outputs found

    Deep level transient spectroscopy study for the development of ion-implanted silicon field-effect transistors for spin-dependent transport

    Full text link
    A deep level transient spectroscopy (DLTS) study of defects created by low-fluence, low-energy ion implantation for development of ion-implanted silicon field-effect transistors for spin-dependent transport experiments is presented. Standard annealing strategies are considered to activate the implanted dopants and repair the implantation damage in test metal-oxide-semiconductor (MOS) capacitors. Fixed oxide charge, interface trapped charge and the role of minority carriers in DLTS are investigated. A furnace anneal at 950 o\rm ^{o}C was found to activate the dopants but did not repair the implantation damage as efficiently as a 1000 o\rm ^{o}C rapid thermal anneal. No evidence of bulk traps was observed after either of these anneals. The ion- implanted spin-dependent transport device is shown to have expected characteristics using the processing strategy determined in this study.Comment: 4 pages, 6 figure

    Coherent electrical rotations of valley states in Si quantum dots using the phase of the valley-orbit coupling

    Full text link
    A gate electric field has a small but non-negligible effect on the phase of the valley-orbit coupling in Si quantum dots. Finite interdot tunneling between valley eigenstates in a double quantum dot is enabled by a small difference in the phase of the valley-orbit coupling between the two dots, and it in turn allows controllable rotations of two-dot valley eigenstates at a level anticrossing. We present a comprehensive analytical discussion of this process, with estimates for realistic structures.Comment: 10 pages, 2 figure

    Electrically detected magnetic resonance using radio-frequency reflectometry

    Full text link
    The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of an LCR tank circuit. Applied to a silicon field-effect transistor at milli-kelvin temperatures, this method shows a 25-fold increased signal-to-noise ratio of the conduction band electron spin resonance and a higher operational bandwidth of > 300 kHz compared to the kHz bandwidth of conventional readout techniques. This increase in temporal resolution provides a method for future direct observations of spin dynamics in the electrical device characteristics.Comment: 9 pages, 3 figure

    Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures

    Full text link
    Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at.%. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to map out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.Comment: 22 pages, 6 figures, submitted to JA

    Real-time detection of single electron tunneling using a quantum point contact

    Full text link
    We observe individual tunnel events of a single electron between a quantum dot and a reservoir, using a nearby quantum point contact (QPC) as a charge meter. The QPC is capacitively coupled to the dot, and the QPC conductance changes by about 1% if the number of electrons on the dot changes by one. The QPC is voltage biased and the current is monitored with an IV-convertor at room temperature. We can resolve tunnel events separated by only 8 μ\mus, limited by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound on the accessible timescales.Comment: 3 pages, 3 figures, submitte

    Using a quantum dot as a high-frequency shot noise detector

    Full text link
    We present the experimental realization of a Quantum Dot (QD) operating as a high-frequency noise detector. Current fluctuations produced in a nearby Quantum Point Contact (QPC) ionize the QD and induce transport through excited states. The resulting transient current through the QD represents our detector signal. We investigate its dependence on the QPC transmission and voltage bias. We observe and explain a quantum threshold feature and a saturation in the detector signal. This experimental and theoretical study is relevant in understanding the backaction of a QPC used as a charge detector.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates

    Full text link
    We present a method for reading out the spin state of electrons in a quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. We experimentally demonstrate the method by performing read-out of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on in-plane magnetic field.Comment: 4 pages, 4 figure

    Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field

    Full text link
    We observe mixing between two-electron singlet and triplet states in a double quantum dot, caused by interactions with nuclear spins in the host semiconductor. This mixing is suppressed by applying a small magnetic field, or by increasing the interdot tunnel coupling and thereby the singlet-triplet splitting. Electron transport involving transitions between triplets and singlets in turn polarizes the nuclei, resulting in striking bistabilities. We extract from the fluctuating nuclear field a limitation on the time-averaged spin coherence time T2* of 25 ns. Control of the electron-nuclear interaction will therefore be crucial for the coherent manipulation of individual electron spins.Comment: 4 pages main text, 4 figure

    Semiconductor few-electron quantum dot operated as a bipolar spin filter

    Full text link
    We study the spin states of a few-electron quantum dot defined in a two-dimensional electron gas, by applying a large in-plane magnetic field. We observe the Zeeman splitting of the two-electron spin triplet states. Also, the one-electron Zeeman splitting is clearly resolved at both the zero-to-one and the one-to-two electron transition. Since the spin of the electrons transmitted through the dot is opposite at these two transitions, this device can be employed as an electrically tunable, bipolar spin filter. Calculations and measurements show that higher-order tunnel processes and spin-orbit interaction have a negligible effect on the polarization.Comment: 4 pages, 3 figure
    corecore