34 research outputs found
Deep level transient spectroscopy study for the development of ion-implanted silicon field-effect transistors for spin-dependent transport
A deep level transient spectroscopy (DLTS) study of defects created by
low-fluence, low-energy ion implantation for development of ion-implanted
silicon field-effect transistors for spin-dependent transport experiments is
presented. Standard annealing strategies are considered to activate the
implanted dopants and repair the implantation damage in test
metal-oxide-semiconductor (MOS) capacitors. Fixed oxide charge, interface
trapped charge and the role of minority carriers in DLTS are investigated. A
furnace anneal at 950 C was found to activate the dopants but did not
repair the implantation damage as efficiently as a 1000 C rapid
thermal anneal. No evidence of bulk traps was observed after either of these
anneals. The ion- implanted spin-dependent transport device is shown to have
expected characteristics using the processing strategy determined in this
study.Comment: 4 pages, 6 figure
Coherent electrical rotations of valley states in Si quantum dots using the phase of the valley-orbit coupling
A gate electric field has a small but non-negligible effect on the phase of
the valley-orbit coupling in Si quantum dots. Finite interdot tunneling between
valley eigenstates in a double quantum dot is enabled by a small difference in
the phase of the valley-orbit coupling between the two dots, and it in turn
allows controllable rotations of two-dot valley eigenstates at a level
anticrossing. We present a comprehensive analytical discussion of this process,
with estimates for realistic structures.Comment: 10 pages, 2 figure
Electrically detected magnetic resonance using radio-frequency reflectometry
The authors demonstrate readout of electrically detected magnetic resonance
at radio frequencies by means of an LCR tank circuit. Applied to a silicon
field-effect transistor at milli-kelvin temperatures, this method shows a
25-fold increased signal-to-noise ratio of the conduction band electron spin
resonance and a higher operational bandwidth of > 300 kHz compared to the kHz
bandwidth of conventional readout techniques. This increase in temporal
resolution provides a method for future direct observations of spin dynamics in
the electrical device characteristics.Comment: 9 pages, 3 figure
Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures
Boron implantation with in-situ dynamic annealing is used to produce highly
conductive sub-surface layers in type IIa (100) diamond plates for the search
of a superconducting phase transition. Here we demonstrate that high-fluence
MeV ion-implantation, at elevated temperatures avoids graphitization and can be
used to achieve doping densities of 6 at.%. In order to quantify the diamond
crystal damage associated with implantation Raman spectroscopy was performed,
demonstrating high temperature annealing recovers the lattice. Additionally,
low-temperature electronic transport measurements show evidence of charge
carrier densities close to the metal-insulator-transition. After electronic
characterization, secondary ion mass spectrometry was performed to map out the
ion profile of the implanted plates. The analysis shows close agreement with
the simulated ion-profile assuming scaling factors that take into account an
average change in diamond density due to device fabrication. Finally, the data
show that boron diffusion is negligible during the high temperature annealing
process.Comment: 22 pages, 6 figures, submitted to JA
Real-time detection of single electron tunneling using a quantum point contact
We observe individual tunnel events of a single electron between a quantum
dot and a reservoir, using a nearby quantum point contact (QPC) as a charge
meter. The QPC is capacitively coupled to the dot, and the QPC conductance
changes by about 1% if the number of electrons on the dot changes by one. The
QPC is voltage biased and the current is monitored with an IV-convertor at room
temperature. We can resolve tunnel events separated by only 8 s, limited
by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound
on the accessible timescales.Comment: 3 pages, 3 figures, submitte
Using a quantum dot as a high-frequency shot noise detector
We present the experimental realization of a Quantum Dot (QD) operating as a
high-frequency noise detector. Current fluctuations produced in a nearby
Quantum Point Contact (QPC) ionize the QD and induce transport through excited
states. The resulting transient current through the QD represents our detector
signal. We investigate its dependence on the QPC transmission and voltage bias.
We observe and explain a quantum threshold feature and a saturation in the
detector signal. This experimental and theoretical study is relevant in
understanding the backaction of a QPC used as a charge detector.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates
We present a method for reading out the spin state of electrons in a quantum
dot that is robust against charge noise and can be used even when the electron
temperature exceeds the energy splitting between the states. The spin states
are first correlated to different charge states using a spin dependence of the
tunnel rates. A subsequent fast measurement of the charge on the dot then
reveals the original spin state. We experimentally demonstrate the method by
performing read-out of the two-electron spin states, achieving a single-shot
visibility of more than 80%. We find very long triplet-to-singlet relaxation
times (up to several milliseconds), with a strong dependence on in-plane
magnetic field.Comment: 4 pages, 4 figure
Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field
We observe mixing between two-electron singlet and triplet states in a double
quantum dot, caused by interactions with nuclear spins in the host
semiconductor. This mixing is suppressed by applying a small magnetic field, or
by increasing the interdot tunnel coupling and thereby the singlet-triplet
splitting. Electron transport involving transitions between triplets and
singlets in turn polarizes the nuclei, resulting in striking bistabilities. We
extract from the fluctuating nuclear field a limitation on the time-averaged
spin coherence time T2* of 25 ns. Control of the electron-nuclear interaction
will therefore be crucial for the coherent manipulation of individual electron
spins.Comment: 4 pages main text, 4 figure
Semiconductor few-electron quantum dot operated as a bipolar spin filter
We study the spin states of a few-electron quantum dot defined in a
two-dimensional electron gas, by applying a large in-plane magnetic field. We
observe the Zeeman splitting of the two-electron spin triplet states. Also, the
one-electron Zeeman splitting is clearly resolved at both the zero-to-one and
the one-to-two electron transition. Since the spin of the electrons transmitted
through the dot is opposite at these two transitions, this device can be
employed as an electrically tunable, bipolar spin filter. Calculations and
measurements show that higher-order tunnel processes and spin-orbit interaction
have a negligible effect on the polarization.Comment: 4 pages, 3 figure