22 research outputs found

    Steroid Binding to Autotaxin Links Bile Salts and Lysophosphatidic Acid Signalling

    Get PDF
    Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs

    Rational design of autotaxin inhibitors by structural evolution of endogenous modulators

    Get PDF
    Autotaxin produces the bioactive lipid lysophosphatidic acid (LPA), and is a drug target of considerable interest for numerous pathologies. We report the expedient, structure-guided evolution of weak physiological allosteric inhibitors (bile salts) into potent competitive Autotaxin inhibitors that do not interact with the catalytic site. Functional data confirms that our lead compound attenuates LPA mediated signalling in cells, and reduces LPA synthesis in vivo, providing a promising natural product derived scaffold for drug discovery

    Structure-activity relationships of small molecule autotaxin inhibitors with a discrete binding mode

    Get PDF
    Autotaxin (ATX) is a secreted enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) to the bioactive lysophosphatidic acid (LPA) and choline. The ATX-LPA signalling pathway is implicated in cell survival, migration, and proliferation; thus, the inhibition of ATX is a recognized therapeutic target for a number of diseases including fibrotic diseases, cancer, and inflammation, amongst others. Many of the developed synthetic inhibitors for ATX have resembled the lipid chemotype of the native ligand; however, a small number of inhibitors have been described that deviate from this common scaffold. Herein, we report the structure-activity relationships (SAR) of a previously reported small molecule ATX inhibitor. We show through enzyme kinetics studies that analogues of this chemotype are noncompetitive inhibitors, and using a crystal structure with ATX we confirm the discrete binding mode

    PIP4Kbeta interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha

    No full text
    The beta-isoform of PIP4K (PtdIns5P-4-kinase) regulates the levels of nuclear PtdIns5P, which in turn modulates the acetylation of the tumour suppressor p53. The crystal structure of PIP4Kbeta demonstrated that it can form a homodimer with the two subunits arranged in opposite orientations. Using MS, isoform-specific antibodies against PIP4Ks, RNAi (RNA interference) suppression and overexpression studies, we show that PIP4Kbeta interacts in vitro and in vivo with the PIP4Kalpha isoform. As the two isoforms phosphorylate the same substrate to generate the same product, the interaction could be considered to be functionally redundant. However, contrary to expectation, we find that PIP4Kbeta has 2000-fold less activity towards PtdIns5P compared with PIP4Kalpha, and that the majority of PIP4K activity associated with PIP4Kbeta comes from its interaction with PIP4Kalpha. Furthermore, PIP4Kbeta can modulate the nuclear localization of PIP4Kalpha, and PIP4Kalpha has a role in regulating PIP4Kbeta functions. The results of the present study suggest a rationale for the functional interaction between PIP4Kalpha and PIP4Kbeta and provide insight into how the relative levels of the two enzymes may be important in their physiological and pathological roles

    PtdIns5P and Pin1 in oxidative stress signaling

    No full text
    Oxidative signaling is important in cellular health, involved in aging and contributes to the development of several diseases such as cancer, neurodegeneration and diabetes. Correct management of reactive oxygen species (ROS) prevents oxidative stress within cells and is imperative for cellular wellbeing. A key pathway that is regulated by oxidative stress is the activation of proline-directed stress kinases (p38, JNK). Phosphorylation induced by these kinases is often translated into cellular outcome through the recruitment of the prolyl-isomerase Pin1. Pin1 binds to phosphorylated substrates using its WW-domain and can induce conformational changes in the target protein through its prolyl-isomerase activity. We show that exposure of cells to UV irradiation or hydrogen peroxide (H₂O₂), induces the synthesis of the phosphoinositide second messenger PtdIns5P in part by inducing the interaction between phosphatidylinositol-5-phosphate 4-kinase (PIP4K) enzymes that remove PtdIns5P, with Pin1. In response to H₂O₂ exposure, Murine Embryonic Fibroblasts (MEFs) derived from Pin1⁻/⁻ mice showed increased cell viability and an increased abundance of PtdIns5P compared to wild-type MEFs. Decreasing the levels of PtdIns5P in Pin1⁻/⁻ MEFs decreased both their viability in response to H₂O₂ exposure and the expression of genes required for cellular ROS management. The decrease in the expression of these genes manifested itself in the increased accumulation of cellular ROS. These data strongly argue that PtdIns5P acts as a stress-induced second messenger that can calibrate how cells manage ROS.</p

    Methods for the determination of the mass of nuclear PtdIns4P, PtdIns5P, and PtdIns(4,5)P2

    No full text
    Phosphatidylinositol (PtdIns) and its phosphorylated derivatives represent less than 5% of total membrane phospholipids in cells. Despite their low abundance, they form a dynamic signaling system that is regulated in response to a variety of extra- and intracellular cues. Protein domains including PH, FYVE, ENTH, PHOX, PHD fingers, and lysine-/arginine-rich patches can bind to specific phosphoinositide isomers, which, in turn, can induce changes in the subcellular localization, posttranslational modification, protein interaction partners, or activity of the protein containing such a domain. Phosphoinositides and the enzymes that synthesize them are found in many different subcellular compartments including the nuclear matrix, heterochromatin, and sites of active RNA splicing, suggesting that phosphoinositides may regulate specific functions within the nuclear compartment. The existence of distinct subcellular pools has led to the challenging task of the quantitation of temporal and spatial changes in phosphoinositides. We report methods to measure the mass levels of three different phosphoinositides within the nuclear compartment

    Phosphoinositide signalling in the nucleus

    No full text
    Phosphorylation at the 3,4, or 5, position of the inositol head group of phosphatidylinositol generates seven different phosphoinositides that form the basis of a ubiquitous membrane signalling system. An array of tightly regulated phosphoinositide kinases and phosphatases, ultimately control the subcellular profile of phosphoinositides (Irvine, 2005). Phosphoinositides can regulate protein localisation, ion channel function and protein enzymatic activity, which can impact on cellular processes including vesicle transport, cytoskeletal dynamics, cell proliferation and survival, gene transcription, cell polarity and migration (McCrea and DeCamilli, 2009). Phosphoinositides are tethered tightly into the membrane and can recruit and localise proteins to specific subcellular membrane domains through specific phosphoinositide interacting domains (PID) (Lemmon, 2003). Because the membrane can be considered more akin to a two dimensional system, membrane interaction is analogous to inducing protein/protein interactions and acts to concentrate upstream regulators and downstream targets together leading to enhanced downstream signalling and specificity. Phosphoinositide signalling occurs on many different intracellular membranes including the inner surface of the plasma membrane, the golgi, the endoplasmic reticulum and on membrane vesicles that move between these compartments and their deregulation had been implicated in an array of human diseases (McCrea and DeCamilli, 2009)
    corecore