550 research outputs found

    Synthesis of 18F-labelled 2-fluoro-1,4-quinones using acetylhypofluorite

    Get PDF
    The fluorination of 1,4-benzo- and naphthoquinones using [18F]acetylhypofluorite is described. For compounds with electron-donating substituents fair to good radiochemical yields have been reached

    Microsomal superoxide anion production and NADPH-oxidation in a series of 22 aziridinylbenzoquinones

    Get PDF
    Several 2,5-bis(1-aziridinyl)-1,4-benzoquinones (BABQs) can be activated to alkylating species by reduction of the quinone moiety. On the other hand, cytotoxicity of these compounds can be induced by redox cycling. A series of BABQs and their methylated analogues (BMABQs) with different substituents at the 3- and 6-position was synthesized in order to investigate the influence of the substituents on the reduction of the quinone moiety and on the generation of superoxide anion radicals with rat liver microsomes. Superoxide anion production (SAP) ranged from 3.7±0.1 to 742±74 nmoles/min/mg protein with quinone concentrations of 10 nmoles/ml. NADPH-oxidation was measured under the same conditions and it correlated well (r = 0.88, P < 0.001) with SAP. It ranged from 1.4±0.2 to 494±60 nmoles/min/mg protein. SAP for 22 B(M)ABQs showed a good correlation with the summated electronic substituent constant θpara,total (r = 0.86, P < 0.001). It can be concluded that superoxide anion production by 22 B(M)ABQs in rat liver microsomes can be predicted from structural features of the compounds

    Piperazine-containing polymer brush layer as supported base catalyst in a glass microreactor

    Get PDF
    The covalent attachment of piperazine onto the inner walls of a microreactor using glycidyl methacrylate polymer brushes has been demonstrated. The piperazine-containing polymer brushes were first grown on a flat silicon oxide surface and were characterized by contact angle, Fourier transform infrared (FT-IR), ellipsometry, and X-ray photoelectron spectroscopy (XPS). The applicability of the catalytic polymer brushes in a microreactor was demonstrated for the Knoevenagel and nitroaldol condensation reactions, and the synthesis of coumarin derivatives. The catalytic activity of the microreactor was still intact even after 2 months

    Regioselectivity Control of the Ring Opening of Epoxides With Sodium Azide in a Microreactor

    Get PDF
    The reaction of different types of aromatic and aliphatic epoxides with sodium azide to give vicinal azido alcohols was studied in a microreactor with and without pillars in the channels. Dependent on the substrate, the regioselectivity of the ring opening is affected by the used solvent system, viz. acetonitrile–water (sometimes with 10% acetic acid to promote the reactivity of substrates) or t-butyl acetate–water containing Tween80 as a surfactant. For styrene oxide and α-methylstyrene oxide, the α/ß regioselectivity changes from 4 to 10 and 1.7 to 6.2, respectively, going from acetonitrile–water to Tween80-containing t-butyl acetate–water. The addition of a surfactant (Tween80) stabilizes the interface in the biphasic t-butyl acetate–water. Pillar-containing microreactors gave better conversions than microreactors without pillars and lab scale reactions, probably due to better mixing

    Catalysis by alkali and alkaline-earth metal ions in nucleophilic attack of methoxide ion on crown ethers bearing an intra-annular acetoxy group

    Get PDF
    Rates of reaction of methoxide ion with crown ethers bearing an intra-annular acetoxy group are markedly enhanced by alkali and alkaline-earth metal bromides as a result of much stronger interactions of the metal ions with transition states than with reactants.\ud \ud Rates of reactions of methoxide ion with crown ethers bearing an intra-annular acetoxy group markedly enhanced by alkali and alkaline-earth metal bromides as a result of much stronger interactions of the metal ion with transition state than with reactants

    Multichannel quench-flow microreactor chip for parallel reaction monitoring

    Get PDF
    This paper describes a multichannel silicon-glass microreactor which has been utilized to investigate the kinetics of a Knoevenagel condensation reaction under different reaction conditions. The reaction is performed on the chip in four parallel channels under identical conditions but with different residence times. A special topology of the reaction coils overcomes the common problem arising from the difference in pressure drop of parallel channels having different length. The parallelization of reaction coils combined with chemical quenching at specific locations results in a considerable reduction in experimental effort and cost. The system was tested and showed good reproducibility in flow properties and reaction kinetic data generation

    Photodefinition of channel waveguide in electro-optic polymer

    Get PDF
    Polymers with optically active nonlinear chromophores have been shown to have a promising future in low cost and high speed electro–optic device applications. However, a main question of concern is the photochemical stability of the chromophores for long term application. The chromophore TCVDPA with a benzene bridge between a tricyanovinyl acceptor and an amino donor has been reported to have high photochemical stability combined with high electro-optic activity. In the current work direct waveguide definition of the host polymer SU-8, a negative photoresist, containing this chromophore by masked UV exposure followed by development, has been demonstrated. This was possible by utilizing the chromophore low absorption window in the UV region that allows crosslinking of the host polymer by exposing to UV light followed by thermal curing

    Covalent binding studies on the 14C-labeled antitumour compound 2,5-bis(1-aziridinyl)-1,4-benzoquinone. Involvement of semiquinone radical in binding to DNA, and binding to proteins and bacterial macromolecules in situ

    Get PDF
    2,5-Bis(1-aziridinyl)-1,4-benzoquinone (BABQ) is a compound from which several antitumour drugs are derived, such as Trenimone, Carboquone and Diaziquone (AZQ). The mechanism of DNA binding of BABQ was studied using 14C-labeled BABQ and is in agreement with reduction of the quinone moiety and protonation of the aziridine ring, followed by ring opening and alkylation. The one-electron reduced (semiquinone) form of BABQ alkylates DNA more efficiently than two-electron reduced or non reduced BABQ. Covalent binding to polynucleotides did not unambiguously reveal preference for binding to specific DNA bases. Attempts to elucidate further the molecular structure of DNA adducts by isolation of modified nucleosides from enzymatic digests of reacted DNA failed because of instability of the DNA adducts. The mechanism of covalent binding to protein (bovine serum albumin, BSA) appeared to be completely different from that of covalent binding to DNA. Binding of BABQ to BSA was not enhanced by reduction of the compound and was pH dependent in a way that is opposite to that of DNA alkylation. Glutathione inhibits binding of BABQ to BSA and forms adducts with BABQ in a similar pH dependence as the protein binding. The aziridine group therefore does not seem to be involved in the alkylation of BSA. Incubation of intact E. coli cells, which endogenously reduce BABQ, resulted in binding to both DNA and RNA, but also appreciable protein binding was observed
    corecore