25 research outputs found

    Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides.

    Get PDF
    SUMMARY Here, we describe assembly PCR as a method for the synthesis of long DNA sequences from large numbers of oligodeoxyribonucleotides (oligos). The method, which is derived from DNA shuffling [Stemmer, Nature 370 (1994a) 389-391], does not rely on DNA ligase but instead relies on DNA polymerase to build increasingly longer DNA fragments during the assembly process. A 1.1-kb fragment containing the TEM-1 [3-1actamase-encoding gene (bla) was assembled in a single reaction from a total of 56 oligos, each 40 nucleotides (ntl in length. The synthetic gene was PCR amplified and cloned in a vector containing the tetracycline-resistance gene (Tc R) as the sole selectable marker. Without relying on ampicillin (Ap) selection, 76% of the Tc R colonies were Ap R, making this approach a general method for the rapid and cost-effective synthesis of any gene. We tested the range of assembly PCR by synthesizing, in a single reaction vessel containing 134 oligos, a high-molecular-mass multimeric form of a 2.7-kb plasmid containing the bla gene, the s-fragment of the lacZ gene and the pUC origin of replication. Digestion with a unique restriction enzyme, followed by ligation and transformation in Escherichia coli, yielded the correct plasmid. Assembly PCR is well suited for several in vitro mutagenesis strategies

    Gcg-XTEN: An Improved Glucagon Capable of Preventing Hypoglycemia without Increasing Baseline Blood Glucose

    Get PDF
    While the majority of current diabetes treatments focus on reducing blood glucose levels, hypoglycemia represents a significant risk associated with insulin treatment. Glucagon plays a major regulatory role in controlling hypoglycemia in vivo, but its short half-life and hyperglycemic effects prevent its therapeutic use for non-acute applications. The goal of this study was to identify a modified form of glucagon suitable for prophylactic treatment of hypoglycemia without increasing baseline blood glucose levels.Through application of the XTEN technology, we report the construction of a glucagon fusion protein with an extended exposure profile (Gcg-XTEN). The in vivo half-life of the construct was tuned to support nightly dosing through design and testing in cynomolgus monkeys. Efficacy of the construct was assessed in beagle dogs using an insulin challenge to induce hypoglycemia. Dose ranging of Gcg-XTEN in fasted beagle dogs demonstrated that the compound was biologically active with a pharmacodynamic profile consistent with the designed half-life. Prophylactic administration of 0.6 nmol/kg Gcg-XTEN to dogs conferred resistance to a hypoglycemic challenge at 6 hours post-dose without affecting baseline blood glucose levels. Consistent with the designed pharmacokinetic profile, hypoglycemia resistance was not observed at 12 hours post-dose. Importantly, the solubility and stability of the glucagon peptide were also significantly improved by fusion to XTEN.The data show that Gcg-XTEN is effective in preventing hypoglycemia without the associated hyperglycemia expected for unmodified glucagon. While the plasma clearance of this Gcg-XTEN has been optimized for overnight dosing, specifically for the treatment of nocturnal hypoglycemia, constructs with significantly longer exposure profiles are feasible. Such constructs may have multiple applications such as allowing for more aggressive insulin treatment regimens, treating hypoglycemia due to insulin-secreting tumors, providing synergistic efficacy in combination therapies with long-acting GLP1 analogs, and as an appetite suppressant for treatment of obesity. The improved physical properties of the Gcg-XTEN molecule may also allow for novel delivery systems not currently possible with native glucagon

    Evolution of a Human Immunodeficiency Virus Type 1 Variant with Enhanced Replication in Pig-Tailed Macaque Cells by DNA Shuffling

    No full text
    DNA shuffling facilitated the evolution of a human immunodeficiency virus type 1 (HIV-1) variant with enhanced replication in pig-tailed macaque peripheral blood mononuclear cells (pt mPBMC). This variant consists exclusively of HIV-1-derived sequences with the exception of simian immunodeficiency virus (SIV) nef. Sequences spanning the gag-protease-reverse transcriptase (gag-pro-RT) region from several HIV-1 isolates were shuffled and cloned into a parental HIV-1 backbone containing SIV nef. Neither this full-length parent nor any of the unshuffled HIV-1 isolates replicated appreciably or sustainably in pt mPBMC. Upon selection of the shuffled viral libraries by serial passaging in pt mPBMC, a species emerged which replicated at substantially higher levels (50 to 100 ng/ml p24) than any of the HIV-1 parents and most importantly, could be continuously passaged in pt mPBMC. The parental HIV-1 isolates, when selected similarly, became extinct. Analyses of full-length improved proviral clones indicate that multiple recombination events in the shuffled region and adaptive changes in the rest of the genome contributed synergistically to the improved phenotype. This improved variant may prove useful in establishing a pig-tailed macaque model of HIV-1 infection

    Pharmacokinetics of GLP2-2G-XTEN in cynomolgous monkeys.

    No full text
    <p>GLP2-2G-XTEN plasma concentration is shown following 25 nmol/kg administration via intravenous (triangle) or subcutaneous (square) route. Three animals were dosed by each route of administration. Data points are the average ± s.d. of three animals per time point.</p
    corecore