29 research outputs found

    Intraobserver and interobserver variability and spatial differences in histologic examination of carotid endarterectomy specimens

    Get PDF
    IntroductionStudies using histologic examination and protein analysis of atherosclerotic plaques are increasingly being performed, but reproducibility of plaque histology and variation of plaque composition among different parts of the plaque, which are key to reliability of these studies, are relatively unexplored. Therefore, this study investigated the intraobserver and interobserver variability of plaque histology and spatial variability in plaque composition.MethodsAtherosclerotic plaques (n = 100) obtained during carotid endarterectomy were divided into 0.5-cm segments. Paraffin sections were stained and semiquantitatively analyzed (four categories: no, minor, moderate, and heavy) for fat, macrophages, smooth muscle cells, collagen, calcification, thrombus, and overall phenotype. First, to determine the intraobserver and interobserver reproducibility, two independent observers independently analyzed the plaques. Second, to investigate spatial variability in plaque composition, histologic appearances of the culprit lesions (0-segment) were compared with the histologic appearances of adjacent (+5 mm) and more distant (+10 mm) plaque segments of 30 specimens.ResultsThe κ values for intraobserver variability of fat, macrophages, smooth muscle cells, collagen, calcifications, thrombus, and overall phenotype were 0.83, 0.85, 0.71, 0.63, 0.81, 0.80, and 0.86, respectively, and κ values for interobserver variability were 0.68, 0.74, 0.54, 0.59, 0.82, 0.75, and 0.71, respectively. Comparison of the histologic scorings of adjacent segments revealed a mean κ of 0.40 (range, 0.33 to 0.60). When the culprit segment was compared with the more distant segment, the mean κ was 0.24; however, in 91% of cases, the difference between the culprit segment and the distal segment was one category or less.ConclusionSemiquantitative analysis of carotid atherosclerotic plaque histology was well reproducible, both intraobserver and interobserver. Although variation between different plaque segments in histologic appearance was observed, differences were small in almost all cases. Variability in histologic examination needs to be taken into account in studies comparing plaque imaging with histopathology and plaque research studies

    Caveolin-1 Influences Vascular Protease Activity and Is a Potential Stabilizing Factor in Human Atherosclerotic Disease

    Get PDF
    Caveolin-1 (Cav-1) is a regulatory protein of the arterial wall, but its role in human atherosclerosis remains unknown. We have studied the relationships between Cav-1 abundance, atherosclerotic plaque characteristics and clinical manisfestations of atherosclerotic disease.We determined Cav-1 expression by western blotting in atherosclerotic plaques harvested from 378 subjects that underwent carotid endarterectomy. Cav-1 levels were significantly lower in carotid plaques than non-atherosclerotic vascular specimens. Low Cav-1 expression was associated with features of plaque instability such as large lipid core, thrombus formation, macrophage infiltration, high IL-6, IL-8 levels and elevated MMP-9 activity. Clinically, a down-regulation of Cav-1 was observed in plaques obtained from men, patients with a history of myocardial infarction and restenotic lesions. Cav-1 levels above the median were associated with absence of new vascular events within 30 days after surgery [0% vs. 4%] and a trend towards lower incidence of new cardiovascular events during longer follow-up. Consistent with these clinical data, Cav-1 null mice revealed elevated intimal hyperplasia response following arterial injury that was significantly attenuated after MMP inhibition. Recombinant peptides mimicking Cav-1 scaffolding domain (Cavtratin) reduced gelatinase activity in cultured porcine arteries and impaired MMP-9 activity and COX-2 in LPS-challenged macrophages. Administration of Cavtratin strongly impaired flow-induced expansive remodeling in mice.This is the first study that identifies Cav-1 as a novel potential stabilizing factor in human atherosclerosis. Our findings support the hypothesis that local down-regulation of Cav-1 in atherosclerotic lesions contributes to plaque formation and/or instability accelerating the occurrence of adverse clinical outcomes. Therefore, given the large number of patients studied, we believe that Cav-1 may be considered as a novel target in the prevention of human atherosclerotic disease and the loss of Cav-1 may be a novel biomarker of vulnerable plaque with prognostic value

    Computed tomography of aortic wall calcifications in aortic dissection patients.

    No full text
    To investigate the frequency of aortic calcifications at the outer edge of the false lumen and the frequency of fully circular aortic calcifications in a consecutive series of patients with aortic dissection who underwent contrast-enhanced CT.The study population compromised of 69 consecutive subjects aged 60 years and older with a contrast-enhanced CT scan demonstrating an aortic dissection. All CT scans were evaluated for the frequency of aortic calcifications at the outer edge of the false lumen and the frequency of fully circular aortic calcifications by two experienced observers. Between observer reliability was evaluated by using Cohen's Kappa. Differences between groups were tested using unpaired T test and Chi-square test.Presumed media calcifications were observed in 22 (32%) patients of 60 years and older and were found more frequently in chronic aortic dissection (N = 12/23, 52%) than in acute aortic dissection (N = 10/46, 22%).As the intima has been torn away by the aortic dissection it is highly likely that CT scans can visualize the calcifications in the tunica media of the aorta

    Illustration of patients with aortic dissection who have calcifications at the outer edge of the false lumen.

    No full text
    <p>Illustration of four different patients (aged 65–77) with an aortic dissection and thin linear calcifications at the outer edge of the false lumen (arrowheads) where the intima has been torn away. In contrast to the dot like calcifications observed in the intima, these thin mainly circular calcifications are most likely located in the media or adventitia layer of the aortic wall. Note the courser calcification at the intima flap (arrow) presumed to be an intima calcification related to atherosclerosis.</p
    corecore