956 research outputs found

    Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    Full text link
    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin-polarization in ferromagnet semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered.Comment: 11 pages, 4 figures; to appear in Materials Science and Engineering

    Spin-polarized electron transport in ferromagnet/semiconductor heterostructures: Unification of ballistic and diffusive transport

    Full text link
    A theory of spin-polarized electron transport in ferromagnet/semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductor structures, is developed. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. A key element of the unified description of transport inside a (nondegenerate) semiconductor is the thermoballistic current consisting of electrons which move ballistically in the electric field arising from internal and external electrostatic potentials, and which are thermalized at randomly distributed equilibration points. The ballistic component in the unified description gives rise to discontinuities in the chemical potential at the boundaries of the semiconductor, which are related to the Sharvin interface conductance. By allowing spin relaxation to occur during the ballistic motion between the equilibration points, a thermoballistic spin-polarized current and density are constructed in terms of a spin transport function. An integral equation for this function is derived for arbitrary values of the momentum and spin relaxation lengths. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the standard spin drift-diffusion equation. The spin polarization in ferromagnet/semiconductor heterostructures is obtained by invoking continuity of the current spin polarization and matching the spin-resolved chemical potentials on the ferromagnet sides of the interfaces. Allowance is made for spin-selective interface resistances. Examples are considered which illustrate the effects of transport mechanism and electric field.Comment: 23 pages, 8 figures, REVTEX 4; minor corrections introduced; to appear in Phys. Rev.

    Global Optimization by Energy Landscape Paving

    Get PDF
    We introduce a novel heuristic global optimization method, energy landscape paving (ELP), which combines core ideas from energy surface deformation and tabu search. In appropriate limits, ELP reduces to existing techniques. The approach is very general and flexible and is illustrated here on two protein folding problems. For these examples, the technique gives faster convergence to the global minimum than previous approaches.Comment: to appear in Phys. Rev. Lett. (2002

    ToPoliNano and fiction: Design Tools for Field-coupled Nanocomputing

    Get PDF
    Field-coupled Nanocomputing (FCN) is a computing concept with several promising post-CMOS candidate implementations that offer tremendously low power dissipation and highest processing performance at the same time. Two of the manifold physical implementations are Quantum-dot Cellular Automata (QCA) and Nanomagnet Logic (NML). Both inherently come with domain-specific properties and design constraints that render established conventional design algorithms inapplicable. Accordingly, dedicated design tools for those technologies are required. This paper provides an overview of two leading examples of such tools, namely fiction and ToPoliNano. Both tools provide effective methods that cover aspects such as placement, routing, clocking, design rule checking, verification, and logical as well as physical simulation. By this, both freely available tools provide platforms for future research in the FCN domain

    Intensity interferometry of single x-ray pulses from a synchrotron storage ring

    Full text link
    We report on measurements of second-order intensity correlations at the high brilliance storage ring PETRA III using a prototype of the newly developed Adaptive Gain Integrating Pixel Detector (AGIPD). The detector recorded individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function was measured simultaneously at different spatial separations that allowed to determine the transverse coherence length at these x-ray energies. The measured values are in a good agreement with theoretical simulations based on the Gaussian Schell-model.Comment: 16 pages, 6 figures, 42 reference

    Barrier-controlled carrier transport in microcrystalline semiconducting materials: Description within a unified model

    Full text link
    A recently developed model that unifies the ballistic and diffusive transport mechanisms is applied in a theoretical study of carrier transport across potential barriers at grain boundaries in microcrystalline semiconducting materials. In the unified model, the conductance depends on the detailed structure of the band edge profile and in a nonlinear way on the carrier mean free path. Equilibrium band edge profiles are calculated within the trapping model for samples made up of a linear chain of identical grains. Quantum corrections allowing for tunneling are included in the calculation of electron mobilities. The dependence of the mobilities on carrier mean free path, grain length, number of grains, and temperature is examined, and appreciable departures from the results of the thermionic-field-emission model are found. Specifically, the unified model is applied in an analysis of Hall mobility data for n-type microcrystalline Si thin films in the range of thermally activated transport. Owing mainly to the effect of tunneling, potential barrier heights derived from the data are substantially larger than the activation energies of the Hall mobilities. The specific features of the unified model, however, cannot be resolved within the rather large uncertainties of the analysis.Comment: REVTex, 19 pages, 9 figures; to appear in J. Appl. Phy

    Elucidating the structural composition of a Fe-N-C catalyst by nuclear and electron resonance techniques

    Get PDF
    Fe–N–C catalysts are very promising materials for fuel cells and metal–air batteries. This work gives fundamental insights into the structural composition of an Fe–N–C catalyst and highlights the importance of an in‐depth characterization. By nuclear‐ and electron‐resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of α‐iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Fe–N–C catalysts prepared by pyrolysis at 900 °C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with end‐on bonded oxygen as one of the axial ligands

    Hydrogen molecule in a magnetic field: The lowest states of the Pi manifold and the global ground state of the parallel configuration

    Full text link
    The electronic structure of the hydrogen molecule in a magnetic field is investigated for parallel internuclear and magnetic field axes. The lowest states of the Π\Pi manifold are studied for spin singlet and triplet(Ms=−1)(M_s = -1) as well as gerade and ungerade parity for a broad range of field strengths 0≀B≀100a.u.0 \leq B \leq 100 a.u. For both states with gerade parity we observe a monotonous decrease in the dissociation energy with increasing field strength up to B=0.1a.u.B = 0.1 a.u. and metastable states with respect to the dissociation into two H atoms occur for a certain range of field strengths. For both states with ungerade parity we observe a strong increase in the dissociation energy with increasing field strength above some critical field strength BcB_c. As a major result we determine the transition field strengths for the crossings among the lowest 1ÎŁg^1\Sigma_g, 3ÎŁu^3\Sigma_u and 3Πu^3\Pi_u states. The global ground state for Bâ‰Č0.18a.u.B \lesssim 0.18 a.u. is the strongly bound 1ÎŁg^1\Sigma_g state. The crossings of the 1ÎŁg^1\Sigma_g with the 3ÎŁu^3\Sigma_u and 3Πu^3\Pi_u state occur at B≈0.18B \approx 0.18 and B≈0.39a.u.B \approx0.39 a.u., respectively. The transition between the 3ÎŁu^3\Sigma_u and 3Πu^3\Pi_u state occurs at B≈12.3a.u.B \approx 12.3 a.u. Therefore, the global ground state of the hydrogen molecule for the parallel configuration is the unbound 3ÎŁu^3\Sigma_u state for 0.18â‰ČBâ‰Č12.3a.u.0.18 \lesssim B \lesssim 12.3 a.u. The ground state for B≳12.3a.u.B \gtrsim 12.3 a.u. is the strongly bound 3Πu^3\Pi_u state. This result is of great relevance to the chemistry in the atmospheres of magnetic white dwarfs and neutron stars.Comment: submitted to Physical Review

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree
    • 

    corecore