2 research outputs found

    Blade-wake interactions in cross-flow turbines

    Full text link
    This paper presents analytical bounds for blade–wake interaction phenomenona occurring in rotating cross-flow turbines for wind and tidal energy generation (e.g. H rotors, Darrieus or vertical axis). Limiting cases are derived for one bladed turbines and extended to the more common three bladed configuration. Additionally, we present a classification of the blade–wake type of interactions in terms of limiting tip speed ratios. These bounds are validated using a high order h=p Discontinuous Galerkin solver with sliding meshes. This computational method enables highly accurate flow solutions and shows that the analytical bounds correspond to limiting blade-wake interactions in fully resolved flow simulation

    Constructive interference effects for tidal turbine arrays

    Get PDF
    The performance benefits of deploying tidal turbines in close side-by-side proximity to exploit constructive interference effects are demonstrated experimentally using two 1.2 m diameter turbines. The turbines are arrayed side-by-side at 1/4 diameter tip-to-tip spacing, and their performance compared with that of a single rotor. Tests were completed in the 25 m diameter, 2 m deep wave and current FloWave Ocean Energy Research facility. A detailed assessment of inflow conditions at different control points is used to understand the impact that rotors, designed for high blockage conditions, have on the approach flow. After accounting for global blockage, a 10.8 % uplift in the twin-turbine-averaged power coefficient, relative to that for a single turbine, is found for the turbine design speed, at the expense of a 5.2 % increase in thrust coefficient and 3.1 % increase in tip-speed-ratio. Flowfield mapping demonstrated flow effects at array and device scale including array bypass flows and jetting between turbines. Azimuthal variation of blade root flapwise and edgewise bending moments show that the turbines interact in a beneficial manner, with additional and sustained loading peaks as the blades pass in close proximity to the neighbouring rotor. Peak performance for the twin turbines occurred at a higher tip-speed-ratio than for the single turbine, which is consistent with the twin turbines exerting a higher thrust on the flow to achieve maximum power. The twin turbine performance variation with tip-speed-ratio is found to be more gradual than for the single turbine. Using differential rotor speed control we observe that array performance is robust to small differences in neighbouring rotor operating point. Through these experiments we demonstrate that there is a substantial, achievable performance benefit from closely arraying turbines for side-by-side operation and designing them for constructive interference
    corecore