45 research outputs found

    Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection

    Get PDF
    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches

    Immunodominance of HIV-1 Specific CD8+ T-Cell Responses Is Related to Disease Progression Rate in Vertically Infected Adolescents

    Get PDF
    BACKGROUND: HIV-1 vertically infected children in the USA are living into adolescence and beyond with the widespread use of antiretroviral drugs. These patients exhibit striking differences in the rate of HIV-1 disease progression which could provide insights into mechanisms of control. We hypothesized that differences in the pattern of immunodomination including breadth, magnitude and polyfunctionality of HIV-1 specific CD8+ T cell response could partially explain differences in progression rate. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we mapped, quantified, and assessed the functionality of these responses against individual HIV-1 Gag peptides in 58 HIV-1 vertically infected adolescents. Subjects were divided into two groups depending upon the rate of disease progression: adolescents with a sustained CD4%≥25 were categorized as having no immune suppression (NS), and those with CD4%≤15 categorized as having severe immune suppression (SS). We observed differences in the area of HIV-1-Gag to which the two groups made responses. In addition, subjects who expressed the HLA- B*57 or B*42 alleles were highly likely to restrict their immunodominant response through these alleles. There was a significantly higher frequency of naïve CD8+ T cells in the NS subjects (p = 0.0066) compared to the SS subjects. In contrast, there were no statistically significant differences in any other CD8+ T cell subsets. The differentiation profiles and multifunctionality of Gag-specific CD8+ T cells, regardless of immunodominance, also failed to demonstrate meaningful differences between the two groups. CONCLUSIONS/SIGNIFICANCE: Together, these data suggest that, at least in vertically infected adolescents, the region of HIV-1-Gag targeted by CD8+ T cells and the magnitude of that response relative to other responses may have more importance on the rate of disease progression than their qualitative effector functions

    Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research

    Get PDF
    Chikungunya virus (CHIKV) is becoming an increasing global health issue which has spread across the globe and as far north as southern Europe. There is currently no vaccine or anti-viral treatment available. Although there has been a recent increase in CHIKV research, many of these in vitro studies have used a wide range of cell lines which are not physiologically relevant to CHIKV infection in vivo. In this study, we aimed to evaluate a panel of cell lines to identify a subset that would be both representative of the infectious cycle of CHIKV in vivo, and amenable to in vitro applications such as transfection, luciferase assays, immunofluorescence, western blotting and virus infection. Based on these parameters we selected four mammalian and two mosquito cell lines, and further characterised these as potential tools in CHIKV research

    HIV-1 Superinfection in the Antiretroviral Therapy Era: Are Seroconcordant Sexual Partners at Risk?

    Get PDF
    Acquisition of more than one strain of human immunodeficiency virus type 1 (HIV-1) has been reported to occur both during and after primary infection, but the risks and repercussions of dual and superinfection are incompletely understood. In this study, we evaluated a longitudinal cohort of chronically HIV-infected men who were sexual partners to determine if individuals acquired their partners' viral strains.Our cohort of HIV-positive men consisted of 8 couples that identified themselves as long-term sexual partners. Viral sequences were isolated from each subject and analyzed using phylogenetic methods. In addition, strain-specific PCR allowed us to search for partners' viruses present at low levels. Finally, we used computational algorithms to evaluate for recombination between partners' viral strains.All couples had at least one factor associated with increased risk for acquisition of new HIV strains during the study, including detectable plasma viral load, sexually transmitted infections, and unprotected sex. One subject was dually HIV-1 infected, but neither strain corresponded to that of his partner. Three couples' sequences formed monophyletic clusters at the entry visit, with phylogenetic analysis suggesting that one member of the couple had acquired an HIV strain from his identified partner or that both had acquired it from the same source outside their partnership. The 5 remaining couples initially displayed no evidence of dual infection, using phylogenetic analysis and strain-specific PCR. However, in 1 of these couples, further analysis revealed recombinant viral strains with segments of viral genomes in one subject that may have derived from the enrolled partner. Thus, chronically HIV-1 infected individuals may become superinfected with additional HIV strains from their seroconcordant sexual partners. In some cases, HIV-1 superinfection may become apparent when recombinant viral strains are detected

    Treatment interruption in chronic HIV-1 infection: does it deliver?

    No full text
    PURPOSE OF REVIEW: This review sets out to overview treatment interruption in chronic HIV-1 infection: what treatment interruption promised, results from recent trials, and what the future holds. RECENT FINDINGS: Recent studies have produced mixed results; several trials have been prematurely halted, whereas others have reported more positive outcomes. One consistent finding has been the identification of the CD4 T-cell count nadir as a critical parameter in determining the outcome of treatment interruption. SUMMARY: The use of treatment interruption is still controversial, but it is becoming clear that certain individuals could benefit, and partial treatment interruption strategies warrant further investigation

    MAIT cells and viruses

    No full text
    Mucosal associated invariant T cells (MAIT cells) bear a T cell receptor (TCR) that specifically targets microbially-derived metabolites. Functionally they respond to bacteria and yeasts, which possess the riboflavin pathway, essential for production of such metabolites and which are presented on MR1. Viruses cannot generate these ligands, so a priori, they should not be recognized by MAIT cells and indeed this is true when considering recognition through the TCR. However, MAIT cells are distinctive in another respect, since they respond quite sensitively to non-TCR signals, especially in the form of inflammatory cytokines. Thus, a number of groups have shown that virus infection can be "sensed" by MAIT cells and a functional response invoked. Since MAIT cells are abundant in humans, especially in tissues such as the liver, the question has arisen as to whether this TCR-independent MAIT cell triggering by viruses plays any role in vivo. In this review, we will discuss the evidence for this phenomenon and some common features which emerge across different recent studies in this area. This article is protected by copyright. All rights reserved

    MAIT cells and viruses

    No full text
    Mucosal associated invariant T cells (MAIT cells) bear a T cell receptor (TCR) that specifically targets microbially-derived metabolites. Functionally they respond to bacteria and yeasts, which possess the riboflavin pathway, essential for production of such metabolites and which are presented on MR1. Viruses cannot generate these ligands, so a priori, they should not be recognized by MAIT cells and indeed this is true when considering recognition through the TCR. However, MAIT cells are distinctive in another respect, since they respond quite sensitively to non-TCR signals, especially in the form of inflammatory cytokines. Thus, a number of groups have shown that virus infection can be "sensed" by MAIT cells and a functional response invoked. Since MAIT cells are abundant in humans, especially in tissues such as the liver, the question has arisen as to whether this TCR-independent MAIT cell triggering by viruses plays any role in vivo. In this review, we will discuss the evidence for this phenomenon and some common features which emerge across different recent studies in this area. This article is protected by copyright. All rights reserved

    Mucosal-associated invariant T-cells: new players in anti-bacterial immunity.

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population involved in anti-bacterial immunity. In human beings, MAIT cells are abundant, comprising ~10% of the CD8(+) T-cell compartment in blood. They are enriched at mucosal sites and are particularly prevalent within the liver. MAIT cells are defined by the expression of a semi-invariant T-cell receptor (Vα7.2-Jα33/12/20) and are restricted by the non-polymorphic, highly evolutionarily conserved MHC class Ib molecule, MHC-related protein (MR)1. MR1 has recently been shown to present an unstable pyrimidine intermediate derived from a biosynthetic precursor of riboflavin; riboflavin biosynthesis occurs in many bacteria but not in human beings. Consistent with this, MAIT cells are responsive to riboflavin-metabolizing bacteria, including Salmonella. In mouse models, MAIT cells have been shown to play a non-redundant role in anti-bacterial immunity, including against Escherichia coli, Klebsiella pneumoniae, and Mycobacterium bovis BCG. In human beings, MAIT cells are decreased in frequency in the blood of patients with tuberculosis or pneumonia, and their frequency has been inversely correlated with the risk of subsequent systemic bacterial infection in patients in intensive care. Intriguingly, MAIT cells are also depleted from the blood early in HIV infection and fail to recover with anti-retroviral therapy, which may contribute to the susceptibility of patients infected with HIV to certain bacterial infections, including non-typhoidal Salmonella. In this review, we will discuss what is currently known about MAIT cells, the role that Salmonella has played in elucidating MAIT cell restriction and function, and the role MAIT cells might play in the control of Salmonella infection

    Inhibition of group B streptococcal growth by IFN gamma-activated human glioblastoma cells.

    No full text
    Group B streptococci are the most important bacteria inducing neonatal septicemia and meningitis. The aim of this study was to assess the role of IFNgamma in the induction of anti-microbial effector mechanisms in human brain tumor cells. Different human glioblastoma/astrocytoma cell lines, stimulated with IFNgamma, restricted the growth of group B streptococci. In addition, we found that TNF alpha is able to enhance the IFNgamma-mediated anti-microbial effect. In contrast to group B streptococci, other bacteria which are also capable of inducing meningitis, like E. coli and all but one of the tested Streptococcus pneumoniae strains, were not influenced by the IFNgamma treated cells. We found that the IFNgamma or the IFNgamma/TNF alpha induced activation of indoleamine 2,3-dioxygenase is responsible for the inhibition of streptococcal growth, since the addition of supplemental L-tryptophan completely blocks the IFNgamma induced bacteriostasis
    corecore