214 research outputs found
Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction
Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA
Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison
Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genus Diplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA in D. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred in D. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA
Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84
The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed
Development and testing of an online community care platform for frail older adults in the Netherlands: a user-centred design
Background
Recent transitions in long-term care in the Netherlands have major consequences for community-dwelling older adults. A new paradigm expects them to manage and arrange their own care and support as much as possible. Technology can support this shift. A study has been conducted to explore the needs of community-dwelling frail older adults with regard to an online platform. An existing platform was subsequently modified, based upon these needs, resulting in an online community care platform (OCC-platform) comprising of care, health, and communication functions. The purpose of this platform was to support frail older adults in their independence and functioning, by stimulating self-care and providing reliable information, products and services.
Methods
The study used a User-Centred Design. The development processes involved the following steps: Step 1) Identification of the User Requirements. To assess the user requirements, direct observations (Nβ=β3) and interviews (Nβ=β14) were performed. Step 2) Modification of an Existing Online Platform. Based upon Step 1, available online platforms were explored to determine whether an existing useful product was available. Two companies collaborated in modifying such a platform; Step 3) Testing the Modified Platform. A total of 73 older adults were invited to test a prototype of the OCC-platform during 6 months, which comprised of two phases: (1) a training phase; and (2) a testing phase.
Results
An iterative process of modifications resulted in an interactive software concept on a Standard PC, containing 11 Functions. The Functions of βcontactsβ, βservicesβ and βmessagingβ, were by far, the most frequently used. The use was at its highest during the first 2 weeks of the testing and then its use steadily declined. The vast majority of the subjects (94%) were positive about the usability of the platform. Only a minority of the subjects (27%) indicated that the platform had added value for them.
Conclusion
The overall prospect was that an OCC-platform can contribute to the social participation and the self-management competencies of frail older adults, together with their social cohesion in the community. In order to validate these prospects, further research is needed on the characteristics and the impact of online platforms
Border Terriers under primary veterinary care in England: demography and disorders
The Border Terrier is a working terrier type that is generally considered to be a relatively healthy and hardy breed. This study aimed to characterise the demography and common disorders of Border Terriers receiving veterinary care in England using de-identified electronic patient record data within the VetCompassβ’ Programme
A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine
<p>Abstract</p> <p>Background</p> <p>In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs.</p> <p>Discussion</p> <p>Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the <it>Roadmap for National Action on Clinical Decision Support </it>commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government.</p> <p>Summary</p> <p>A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and standardized approaches for leveraging these knowledge repositories to generate patient-specific care recommendations at the point of care.</p
Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
Copyright: Β© 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514
Linkage of cystic fibrosis to the proΞ±2(I) collagen gene, COL1A2, on chromosome 7
A linkage has been detected between the locus for cystic fibrosis (CF) and the proΞ±2(I) collagen gene (COL1A2) which is located in the region q21.3βq22.1 of chromosome 7. Based on the combined linkage data derived from 50 informative two-generation nuclear families collected in Canada and Denmark, the distance between COL1A2 and CF is estimated to be 19 centiMorgans. Close lilnkage has also been detected between COL1A2 and the DNA market D7S15 (formerly D0CRI-917) and the serum enzyme activity marker paraoxonase (PON), both of which have previously been found linked to CF. The results of the two-oint and three-point linkage analyses indicate that the most probable order of these four genetic loci is COL1A2-D7S15-PON-CF.published_or_final_versio
- β¦