2 research outputs found

    The OrbiTOF Mass Analyzer: Time-of-Flight Analysis via an Orbitrap Quadro-Logarithmic Field with Periodic Drift Focusing.

    No full text
    Thermo Scientific™ Orbitrap™ analyzers represent prominent class of high-resolution mass analyzer commonly used in life sciences, and for interrogation of complex samples. Injected ions, trapped within a quadro-logarithmic field, orbit a central electrode and oscillate up and down the axis. A new class of multi-reflection time-of-flight mass analyzer has been developed based on the Orbitrap field structure plus an additional series of periodic lenses wrapped around the central axis to constrain beam dispersion. The axial and angular velocity of the injected ions was balanced so that with each axial oscillation, the ions passed through the next lens in the series, to form a tightly folded 25-metre long, 3-dimensional ion path, ending with ions striking a detector surface. Performance was interrogated via experiment and simulation. 70k resolving power was observed within the relatively compact analyzer, albeit at cost to transmission. A larger design with an integrated extraction trap and greater flight energy is discussed

    Parallelized Acquisition of Orbitrap and Astral Analyzers Enables High-Throughput Quantitative Analysis

    No full text
    The growing trend toward high-throughput proteomics demands rapid liquid chromatography–mass spectrometry (LC–MS) cycles that limit the available time to gather the large numbers of MS/MS fragmentation spectra required for identification. Orbitrap analyzers scale performance with acquisition time and necessarily sacrifice sensitivity and resolving power to deliver higher acquisition rates. We developed a new mass spectrometer that combines a mass-resolving quadrupole, the Orbitrap, and the novel Asymmetric Track Lossless (Astral) analyzer. The new hybrid instrument enables faster acquisition of high-resolution accurate mass (HRAM) MS/MS spectra compared with state-of-the-art mass spectrometers. Accordingly, new proteomics methods were developed that leverage the strengths of each HRAM analyzer, whereby the Orbitrap analyzer performs full scans with a high dynamic range and resolution, synchronized with the Astral analyzer’s acquisition of fast and sensitive HRAM MS/MS scans. Substantial improvements are demonstrated over previous methods using current state-of-the-art mass spectrometer
    corecore