25,020 research outputs found

    Adaptation by normal listeners to upward spectral shifts of speech: Implications for cochlear implants

    Get PDF
    Multi-channel cochlear implants typically present spectral information to the wrong ''place'' in the auditory nerve array, because electrodes can only be inserted partway into the cochlea. Although such spectral shifts are known to cause large immediate decrements in performance in simulations, the extent to which listeners can adapt to such shifts has yet to be investigated. Here, the effects of a four-channel implant in normal listeners have been simulated, and performance tested with unshifted spectral information and with the equivalent of a 6.5-mm basalward shift on the basilar membrane (1.3-2.9 octaves, depending on frequency). As expected, the unshifted simulation led to relatively high levels of mean performance (e;g., 64% of words in sentences correctly identified) whereas the shifted simulation led to very poor results (e.g., 1% of words). However, after just nine 20-min sessions of connected discourse tracking with the shifted simulation, performance improved significantly for the identification of intervocalic consonants, medial vowels in monosyllables, and words in sentences (30% of words). Also, listeners were able to track connected discourse of shifted signals without lipreading at rates up to 40 words per minute. Although we do not know if complete adaptation to the shifted signals is possible, it is clear that short-term experiments seriously exaggerate the long-term consequences of such spectral shifts. (C) 1999 Acoustical Society of America. [S0001-4966(99)02012-3]

    Measurements of flow phenomena induced by suction through perforated and partially plugged surfaces

    Get PDF
    Efforts were directed towards completing construction of the windtunnel test section, assembling instrumentation, programming the data acquisition and reduction system, adjusting the streamwise pressure gradient of the test section, calibrating the hot-wire anemometer probe, and constructing and testing a smoke generator. The test section was installed in the wind tunnel and is completely operational. The streamwise pressure gradient was adjusted to be nominally zero at a free-stream velocity of 3.05 m/s (10 ft/s). This was accomplished by adjusting the upper wall of the test section to be slightly divergent. The change in static pressure between any two streamwise locations in the test section was less than one percent of the free-stream dynamic pressure. A suitable means was found for accurately calibrating the hot-wire probe which is used to measure boundary-layer velocity profiles and fluctuating velocities

    Experimental study of flow due to an isolated suction hole and a partially plugged suction slot

    Get PDF
    Details for construction of a model of a partially plugged, laminar flow control, suction slot and an isolated hole are presented. The experimental wind tunnel facility and instrumentation is described. Preliminary boundary layer velocity profiles (without suction model) are presented and shown to be in good agreement with the Blasius laminar profile. Recommendations for the completion of the study are made. An experimental program for study of transition on a rotating disk is described along with preliminary disturbance amplification rate data

    High reflectivity Bragg gratings fabricated by 248nm excimer laser holographic ablation in thin Ta<sub>2</sub>O<sub>5</sub> films overlaid on glass waveguides

    No full text
    Relief Bragg grating reflectors inscribed on channel waveguides may be used in optical communications as add-drop wavelength multiplexers, gain-flattening filters, distributed feedback laser mirrors, or in sensing technology as high sensitivity devices for precise monitoring of chemical or biomedical processes. We present strong Bragg grating reflectors in Ta2O5 thin oxide films overlaid on potassium ion exchanged channel waveguides in BK-7 glass, inscribed using 248nm excimer laser holographic ablation. The grating pattern was created employing two-beam interference using a modified Mach-Zehnder interferometric cavity and the output of a narrow-lined injection cavity 248nm excimer laser. The experimental data presented are divided into two sections: the first section refers to the study of the grating ablation process of thin Ta2O5 films with respect to the exposure conditions; and the second focuses in the implementation of those relief grating in functional waveguide devices

    Nonexponential decay of an unstable quantum system: Small-QQ-value s-wave decay

    Full text link
    We study the decay process of an unstable quantum system, especially the deviation from the exponential decay law. We show that the exponential period no longer exists in the case of the s-wave decay with small QQ value, where the QQ value is the difference between the energy of the initially prepared state and the minimum energy of the continuous eigenstates in the system. We also derive the quantitative condition that this kind of decay process takes place and discuss what kind of system is suitable to observe the decay.Comment: 17 pages, 6 figure

    Establishing an evidenced-based dietetic model of care in haemodialysis using implementation science

    Get PDF
    To establish an evidence-based dietetics service in an in-centre haemodialysis unit utilising implementation science.The service was developed through the Knowledge-to-Action Framework. The steps of the Action Cycle were addressed through a literature review, identification of evidence-based guidelines, benchmarking and local staff engagement. The theoretical domains framework (TDF) was used to identify barriers/enablers, and behaviour change wheel to determine appropriate interventions. To monitor, evaluate outcomes and assess sustained knowledge use we employed multidisciplinary team engagement and database use. Audit data were collected at baseline, 6 and 12 months on nutrition assessment (Patient-Generated Subjective Global Assessment), intervention timeliness and alignment to dietetic workforce recommendations. Descriptive statistics, McNemar tests and a linear mixed model were applied.Barriers existed in the knowledge, skills, environmental context and resources TDF domains. Suitable interventions were identified with training on nutritional management of haemodialysis patients delivered to 148 nurses, and nutrition management recommendations summarised into local procedural resources. A database to prompt and monitor outcome measures was created and indicated that over 18 months post-service commencement, eligible patients received nutrition assessment at least 6-monthly, aligning with recommendations. Prevalence of malnutrition was 28% (n = 9/32) at baseline, 23% (n = 5/22) at 6 months and 20% (n = 4/20) at 12 months (P = 0.50).We demonstrated benefits to service development and implementation with implementation science providing a structured and methodical approach to translating guidelines into practice. Development of training, resources and prompts for outcome measures has supported the establishment of an evidence-based dietetics service in a haemodialysis unit

    The Quantum-Classical Crossover in the Adiabatic Response of Chaotic Systems

    Full text link
    The autocorrelation function of the force acting on a slow classical system, resulting from interaction with a fast quantum system is calculated following Berry-Robbins and Jarzynski within the leading order correction to the adiabatic approximation. The time integral of the autocorrelation function is proportional to the rate of dissipation. The fast quantum system is assumed to be chaotic in the classical limit for each configuration of the slow system. An analytic formula is obtained for the finite time integral of the correlation function, in the framework of random matrix theory (RMT), for a specific dependence on the adiabatically varying parameter. Extension to a wider class of RMT models is discussed. For the Gaussian unitary and symplectic ensembles for long times the time integral of the correlation function vanishes or falls off as a Gaussian with a characteristic time that is proportional to the Heisenberg time, depending on the details of the model. The fall off is inversely proportional to time for the Gaussian orthogonal ensemble. The correlation function is found to be dominated by the nearest neighbor level spacings. It was calculated for a variety of nearest neighbor level spacing distributions, including ones that do not originate from RMT ensembles. The various approximate formulas obtained are tested numerically in RMT. The results shed light on the quantum to classical crossover for chaotic systems. The implications on the possibility to experimentally observe deterministic friction are discussed.Comment: 26 pages, including 6 figure

    Brownian Motion Model of Quantization Ambiguity and Universality in Chaotic Systems

    Full text link
    We examine spectral equilibration of quantum chaotic spectra to universal statistics, in the context of the Brownian motion model. Two competing time scales, proportional and inversely proportional to the classical relaxation time, jointly govern the equilibration process. Multiplicity of quantum systems having the same semiclassical limit is not sufficient to obtain equilibration of any spectral modes in two-dimensional systems, while in three-dimensional systems equilibration for some spectral modes is possible if the classical relaxation rate is slow. Connections are made with upper bounds on semiclassical accuracy and with fidelity decay in the presence of a weak perturbation.Comment: 13 pages, 6 figures, submitted to Phys Rev

    'Datafication': Making sense of (big) data in a complex world

    Get PDF
    This is a pre-print of an article published in European Journal of Information Systems. The definitive publisher-authenticated version is available at the link below. Copyright @ 2013 Operational Research Society Ltd.No abstract available (Editorial
    • …
    corecore