1,167 research outputs found

    Comparison of Expectant and Excisional/Ablative Management of Cervical Intraepithelial Neoplasia Grade 2 (CIN2) in the Era of HPV Testing

    Get PDF
    OBJECTIVE: To investigate conservative and excisional/ablative treatment outcomes for cervical intraepithelial neoplasia grade 2 (CIN2) following introduction of virological test of cure. METHODS: This was a retrospective study of prospectively collected data at a teaching hospital colposcopy unit. 331 sequential biopsy-proved CIN2 cases were involved. CIN2 cases diagnosed between 01/07/2014 and 31/12/2017 were either conservatively managed or treated with excision/ablation and then were followed up until discharge from colposcopy clinic and then using the national cervical cytology database. Outcomes were defined: cytological/histological regression was absence of high-grade CIN on biopsy and/or high-grade dysplasia; virological regression was cytological/histological regression and negative human papillomavirus testing; persistence was biopsy-proven CIN2 and/or moderate dyskaryosis; progression was biopsy-proven CIN3+ and/or severe dyskaryosis. RESULTS: Median follow-up was 22.6 months (range: 1.9–65.1 months). Among 175 (52.9%) patients initially managed conservatively, 77.3% (133/172) regressed, 13.4% (23/172) persisted, 9.3% (16/172) progressed to CIN3+, and 97 (56.4%) patients achieved virological regression. 156 (47.1%) patients underwent initial excision/ablation, with an 89.4% (110/123) virological cure rate. After discharge, 7 (4.0%) and 3 (1.9%) patients redeveloped CIN in the conservative and treatment groups, respectively, during a median period of 17.2 months. CONCLUSION: Conservative management is a reasonable and effective management strategy in appropriately selected women with CIN2. High rates of histological and virological regression should be expected. The previously mentioned data provide useful information for deciding management options

    Milk: the new sports drink? A Review

    Get PDF
    There has been growing interest in the potential use of bovine milk as an exercise beverage, especially during recovery from resistance training and endurance sports. Based on the limited research, milk appears to be an effective post-resistance exercise beverage that results in favourable acute alterations in protein metabolism. Milk consumption acutely increases muscle protein synthesis, leading to an improved net muscle protein balance. Furthermore, when post-exercise milk consumption is combined with resistance training (12 weeks minimum), greater increases in muscle hypertrophy and lean mass have been observed. Although research with milk is limited, there is some evidence to suggest that milk may be an effective post-exercise beverage for endurance activities. Low-fat milk has been shown to be as effective, if not more effective, than commercially available sports drinks as a rehydration beverage. Milk represents a more nutrient dense beverage choice for individuals who partake in strength and endurance activities, compared to traditional sports drinks. Bovine low-fat fluid milk is a safe and effective post exercise beverage for most individuals, except for those who are lactose intolerant. Further research is warranted to better delineate the possible applications and efficacy of bovine milk in the field of sports nutrition

    Backbone and side-chain 1H, 15N and 13C resonance assignments of S18Y mutant of ubiquitin carboxy-terminal hydrolase L1

    Get PDF
    Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), also known as PGP9.5, is a protein of 223 amino acids. Although it was originally characterized as a deubiquitinating enzyme, recent studies indicate that it also functions as a ubiquitin (Ub) ligase and a mono-Ub stabilizer. It is highly abundant in brain, constituting up to 2% of total brain proteins. Down-regulation and extensive oxidative modification of UCH-L1 have been observed in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients. Mutations in the UCH-L1 gene have been reported to be linked to Parkinson’s disease, in particular, the I93 M variant is associated with a higher susceptibility of PD in contrast to a higher protection against PD for the S18Y variant. Hence, the structure of UCH-L1 and the underlying effects of disease associated mutations on the structure and function of UCH-L1 are of considerable interest. Here, we report the NMR spectral assignments of the S18Y human UCH-L1 mutant with the aim to obtain better understanding about the risk of Parkinson’s disease against structural and dynamical changes induced by this mutation on UCH-L1

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice

    Get PDF
    Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice

    Expression and Functional Studies of Ubiquitin C-Terminal Hydrolase L1 Regulated Genes

    Get PDF
    Deubiquitinating enzymes (DUBs) have been increasingly implicated in regulation of cellular processes, but a functional role for Ubiquitin C-terminal Hydrolases (UCHs), which has been largely relegated to processing of small ubiquitinated peptides, remains unexplored. One member of the UCH family, UCH L1, is expressed in a number of malignancies suggesting that this DUB might be involved in oncogenic processes, and increased expression and activity of UCH L1 have been detected in EBV-immortalized cell lines. Here we present an analysis of genes regulated by UCH L1 shown by microarray profiles obtained from cells in which expression of the gene was inhibited by RNAi. Microarray data were verified with subsequent real-time PCR analysis. We found that inhibition of UCH L1 activates genes that control apoptosis, cell cycle arrest and at the same time suppresses expression of genes involved in proliferation and migration pathways. These findings are complemented by biological assays for apoptosis, cell cycle progression and migration that support the data obtained from microarray analysis, and suggest that the multi-functional molecule UCH L1 plays a role in regulating principal pathways involved in oncogenesis

    Years off Your Life? The Effects of Homicide on Life Expectancy by Neighborhood and Race/Ethnicity in Los Angeles County

    Get PDF
    Homicide is one of the leading causes of death in Los Angeles County and is known to be elevated in low-income urban neighborhoods and in black males. However, because homicide occurs primarily among young adults, mortality rate statistics may underrepresent its importance. We estimated the impact of homicide on life expectancy by demographic group and geographic area in Los Angeles County, 2001–2006. Life expectancy estimates were calculated using mortality records and population estimates for Los Angeles County. Cause elimination techniques were used to estimate the impact of homicide on life expectancy. Homicide was estimated to reduce life expectancy by 0.4 years for Los Angeles County residents and by 2.1 years for black males. The impact of homicide on life expectancy was higher in low-income neighborhoods. In some low-income urban neighborhoods, homicide was estimated to decrease life expectancy in black males by nearly 5 years. Homicide causes substantial reductions in life expectancy in Los Angeles County. Its impact is magnified among black males and in low-income urban areas, underscoring the need for homicide reduction in urban centers

    m^6A RNA methylation promotes XIST-mediated transcriptional repression

    Get PDF
    The long non-coding RNA X-inactive specific transcript (XIST) mediates the transcriptional silencing of genes on the X chromosome. Here we show that, in human cells, XIST is highly methylated with at least 78 N^6-methyladenosine (m^6A) residues—a reversible base modification of unknown function in long non-coding RNAs. We show that m^6A formation in XIST, as well as in cellular mRNAs, is mediated by RNA-binding motif protein 15 (RBM15) and its paralogue RBM15B, which bind the m^6A-methylation complex and recruit it to specific sites in RNA. This results in the methylation of adenosine nucleotides in adjacent m^6A consensus motifs. Furthermore, we show that knockdown of RBM15 and RBM15B, or knockdown of methyltransferase like 3 (METTL3), an m^6A methyltransferase, impairs XIST-mediated gene silencing. A systematic comparison of m^6A-binding proteins shows that YTH domain containing 1 (YTHDC1) preferentially recognizes m^6A residues on XIST and is required for XIST function. Additionally, artificial tethering of YTHDC1 to XIST rescues XIST-mediated silencing upon loss of m^6A. These data reveal a pathway of m^6A formation and recognition required for XIST-mediated transcriptional repression

    Domain Analysis Reveals That a Deubiquitinating Enzyme USP13 Performs Non-Activating Catalysis for Lys63-Linked Polyubiquitin

    Get PDF
    Deubiquitination is a reverse process of cellular ubiquitination important for many biological events. Ubiquitin (Ub)-specific protease 13 (USP13) is an ortholog of USP5 implicated in catalyzing hydrolysis of various Ub chains, but its enzymatic properties and catalytic regulation remain to be explored. Here we report studies of the roles of the Ub-binding domains of USP13 in regulatory catalysis by biochemical and NMR structural approaches. Our data demonstrate that USP13, distinct from USP5, exhibits a weak deubiquitinating activity preferring to Lys63-linked polyubiquitin (K63-polyUb) in a non-activation manner. The zinc finger (ZnF) domain of USP13 shares a similar fold with that of USP5, but it cannot bind with Ub, so that USP13 has lost its ability to be activated by free Ub. Substitution of the ZnF domain with that of USP5 confers USP13 the property of catalytic activation. The tandem Ub-associated (UBA) domains of USP13 can bind with different types of diUb but preferentially with K63-linked, providing a possible explanation for the weak activity preferring to K63-polyUb. USP13 can also regulate the protein level of CD3δ in cells, probably depending on its weak deubiquitinating activity and the Ub-binding properties of the UBA domains. Thus, the non-activating catalysis of USP13 for K63-polyUb chains implies that it may function differently from USP5 in cellular deubiquitination processes

    Resistance training with soy vs whey protein supplements in hyperlipidemic males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most individuals at risk for developing cardiovascular disease (CVD) can reduce risk factors through diet and exercise before resorting to drug treatment. The effect of a combination of resistance training with vegetable-based (soy) versus animal-based (whey) protein supplementation on CVD risk reduction has received little study. The study's purpose was to examine the effects of 12 weeks of resistance exercise training with soy versus whey protein supplementation on strength gains, body composition and serum lipid changes in overweight, hyperlipidemic men.</p> <p>Methods</p> <p>Twenty-eight overweight, male subjects (BMI 25–30) with serum cholesterol >200 mg/dl were randomly divided into 3 groups (placebo (n = 9), and soy (n = 9) or whey (n = 10) supplementation) and participated in supervised resistance training for 12 weeks. Supplements were provided in a double blind fashion.</p> <p>Results</p> <p>All 3 groups had significant gains in strength, averaging 47% in all major muscle groups and significant increases in fat free mass (2.6%), with no difference among groups. Percent body fat and waist-to-hip ratio decreased significantly in all 3 groups an average of 8% and 2%, respectively, with no difference among groups. Total serum cholesterol decreased significantly, again with no difference among groups.</p> <p>Conclusion</p> <p>Participation in a 12 week resistance exercise training program significantly increased strength and improved both body composition and serum cholesterol in overweight, hypercholesterolemic men with no added benefit from protein supplementation.</p
    corecore