36,748 research outputs found
Computer program for determination of natural frequencies of closed spherical sandwich shells
Solutions for the axially symmetric motion of an elastic spherical sandwich shell have been obtained from a theory of shells which includes the effects of transverse shear deformation and rotary inertia. Frequency equations and mode shapes are derived for the full vibrations of a closed spherical shell
Absorption of Energy at a Metallic Surface due to a Normal Electric Field
The effect of an oscillating electric field normal to a metallic surface may
be described by an effective potential. This induced potential is calculated
using semiclassical variants of the random phase approximation (RPA). Results
are obtained for both ballistic and diffusive electron motion, and for two and
three dimensional systems. The potential induced within the surface causes
absorption of energy. The results are applied to the absorption of radiation by
small metal spheres and discs. They improve upon an earlier treatment which
used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript
Non-equilibrium steady state of sparse systems
A resistor-network picture of transitions is appropriate for the study of
energy absorption by weakly chaotic or weakly interacting driven systems. Such
"sparse" systems reach a novel non-equilibrium steady state (NESS) once coupled
to a bath. In the stochastic case there is an analogy to the physics of
percolating glassy systems, and an extension of the fluctuation-dissipation
phenomenology is proposed. In the mesoscopic case the quantum NESS might differ
enormously from the stochastic NESS, with saturation temperature determined by
the sparsity. A toy model where the sparsity of the system is modeled using a
log-normal random ensemble is analyzed.Comment: 6 pages, 6 figures, EPL accepted versio
Amplification of High Harmonics Using Weak Perturbative High Frequency Radiation
The mechanism underlying the substantial amplification of the high-order
harmonics q \pm 2K (K integer) upon the addition of a weak seed XUV field of
harmonic frequency q\omega to a strong IR field of frequency \omega is analyzed
in the framework of the quantum-mechanical Floquet formalism and the
semiclassical re-collision model. According to the Floquet analysis, the
high-frequency field induces transitions between several Floquet states and
leads to the appearance of new dipole cross terms. The semiclassical
re-collision model suggests that the origin of the enhancement lies in the
time-dependent modulation of the ground electronic state induced by the XUV
field.Comment: 8 pages, 2 figure
Maser radiometer for cosmic background radiation anisotropy measurements
A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated
Preventing transmission of HIV from mother to child is South Africa ready and willing?
3 page(s
Energy absorption by "sparse" systems: beyond linear response theory
The analysis of the response to driving in the case of weakly chaotic or
weakly interacting systems should go beyond linear response theory. Due to the
"sparsity" of the perturbation matrix, a resistor network picture of
transitions between energy levels is essential. The Kubo formula is modified,
replacing the "algebraic" average over the squared matrix elements by a
"resistor network" average. Consequently the response becomes semi-linear
rather than linear. Some novel results have been obtained in the context of two
prototype problems: the heating rate of particles in Billiards with vibrating
walls; and the Ohmic Joule conductance of mesoscopic rings driven by
electromotive force. Respectively, the obtained results are contrasted with the
"Wall formula" and the "Drude formula".Comment: 8 pages, 7 figures, short pedagogical review. Proceedings of FQMT
conference (Prague, 2011). Ref correcte
Quantum response of weakly chaotic systems
Chaotic systems, that have a small Lyapunov exponent, do not obey the common
random matrix theory predictions within a wide "weak quantum chaos" regime.
This leads to a novel prediction for the rate of heating for cold atoms in
optical billiards with vibrating walls. The Hamiltonian matrix of the driven
system does not look like one from a Gaussian ensemble, but rather it is very
sparse. This sparsity can be characterized by parameters and that
reflect the percentage of large elements, and their connectivity respectively.
For we use a resistor network calculation that has direct relation to the
semi-linear response characteristics of the system.Comment: 7 pages, 5 figures, expanded improved versio
- …
