22,148 research outputs found

    Research study on high energy radiation effect and environment solar cell degradation methods

    Get PDF
    The most detailed and comprehensively verified analytical model was used to evaluate the effects of simplifying assumptions on the accuracy of predictions made by the external damage coefficient method. It was found that the most serious discrepancies were present in heavily damaged cells, particularly proton damaged cells, in which a gradient in damage across the cell existed. In general, it was found that the current damage coefficient method tends to underestimate damage at high fluences. An exception to this rule was thick cover-slipped cells experiencing heavy degradation due to omnidirectional electrons. In such cases, the damage coefficient method overestimates the damage. Comparisons of degradation predictions made by the two methods and measured flight data confirmed the above findings

    Study of radiation hazards to man on extended near earth missions

    Get PDF
    Radiation hazards to man on extended near earth mission

    ARCS, The Arcminute Radio Cluster-lens Search - I. Selection Criteria and Initial Results

    Get PDF
    We present the results of an unbiased radio search for gravitational lensing events with image separations between 15 and 60 arcsec, which would be associated with clusters of galaxies with masses >10^{13-14}M_{\sun}. A parent population of 1023 extended radio sources stronger than 35 mJy with stellar optical identifications was selected using the FIRST radio catalogue at 1.4 GHz and the APM optical catalogue. The FIRST catalogue was then searched for companions to the parent sources stronger than 7 mJy and with separation in the range 15 to 60 arcsec. Higher resolution observations of the resulting 38 lens candidates were made with the VLA at 1.4 GHz and 5 GHz, and with MERLIN at 5 GHz in order to test the lens hypothesis in each case. None of our targets was found to be a gravitational lens system. These results provide the best current constraint on the lensing rate for this angular scale, but improved calculations of lensing rates from realistic simulations of the clustering of matter on the relevant scales are required before cosmologically significant constraints can be derived from this null result. We now have an efficient, tested observational strategy with which it will be possible to make an order-of-magnitude larger unbiased search in the near future.Comment: Accepted for publication in MNRAS. 12 pages, 29 included PostScript figure

    Comparing the correlation length of grain markets in China and France

    Full text link
    In economics comparative analysis plays the same role as experimental research in physics. In this paper we closely examine several methodological problems related to comparative analysis by investigating the specific example of grain markets in China and France respectively. This enables us to answer a question in economic history which has so far remained pending, namely whether or not market integration progressed in the 18th century. In economics as in physics, before being accepted any new result has to be checked and re-checked by different researchers. This is what we call the replication and comparison procedures. We show how these procedures should (and can) be implemented.Comment: 16 pages, 7 figures, to appear in International Journal of Modern Physics

    Lattice Model of Sweeping Interface for Drying Process in Water-Granule Mixture

    Get PDF
    Based on the invasion percolation model, a lattice model for the sweeping interface dynamics is constructed to describe the pattern forming process by a sweeping interface upon drying the water-granule mixture. The model is shown to produce labyrinthine patterns similar to those found in the experiment[Yamazaki and Mizuguchi, J. Phys. Soc. Jpn. \textbf{69} (2000) 2387]. Upon changing the initial granular density, resulting patterns undergo the percolation transition, but estimated critical exponents are different from those of the conventional percolation. Loopless structure of clusters in the patterns produced by the sweeping dynamics seems to influence the nature of the transition.Comment: 6 pages, 7 figure

    Higher Order Correlations in Quantum Chaotic Spectra

    Full text link
    The statistical properties of the quantum chaotic spectra have been studied, so far, only up to the second order correlation effects. The numerical as well as the analytical evidence that random matrix theory can successfully model the spectral fluctuatations of these systems is available only up to this order. For a complete understanding of spectral properties it is highly desirable to study the higher order spectral correlations. This will also inform us about the limitations of random matrix theory in modelling the properties of quantum chaotic systems. Our main purpose in this paper is to carry out this study by a semiclassical calculation for the quantum maps; however results are also valid for time-independent systems.Comment: Revtex, Four figures (Postscript files), Phys. Rev E (in press

    The tidal stripping of satellites

    Full text link
    We present an improved analytic calculation for the tidal radius of satellites and test our results against N-body simulations. The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and {\it the orbit of the star within the satellite}. We demonstrate that this last point is critical and suggest using {\it three tidal radii} to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically. Over short times (\simlt 1-2 Gyrs 1\sim 1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.Comment: 10 pages, 5 figures. Final version accepted for publication in MNRAS. Some new fully analytic tidal radii have been added for power law density profiles (including the isothermal sphere) and some split power law
    corecore