2,795 research outputs found

    Matrix Degradation in Human Immunodeficiency Virus Type 1-Associated Tuberculosis and Tuberculosis Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study.

    Get PDF
    Background: Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. Methods: We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. Results: MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. Conclusions: MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS

    Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis

    Get PDF
    Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration

    Invariant Natural Killer T cell dynamics in HIV-associated tuberculosis.

    Get PDF
    RATIONALE: Tuberculosis (TB) is the leading cause of mortality and morbidity in people living with HIV infection. HIV-infected patients with TB disease are at risk of the paradoxical TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) when they commence anti-retroviral therapy. However, the pathophysiology is incompletely understood and specific therapy is lacking. OBJECTIVES: We investigated the hypothesis that invariant Natural Killer T (iNKT) cells contribute to innate immune dysfunction associated with TB-IRIS. METHODS: In a cross-sectional study of 101 HIV-infected and -uninfected South African patients with active TB and controls, iNKT cells were enumerated using α-galactosylceramide-loaded CD1d tetramers and subsequently functionally characterised by flow cytometry. In a second study of 49 HIV-1-infected TB patients commencing anti-retroviral therapy, iNKT cells in TB-IRIS patients with non-IRIS controls were compared longitudinally. MEASUREMENTS AND MAIN RESULTS: Circulating iNKT cells were reduced in HIV-1 infection, most significantly the CD4+ subset, which was inversely associated with HIV-1 viral load. iNKT cells in HIV-associated TB had increased surface CD107a expression, indicating cytotoxic degranulation. Relatively increased iNKT cell frequency in HIV-infected patients with active TB was associated with development of TB-IRIS following anti-retroviral therapy initiation. iNKT cells in TB-IRIS were CD4+CD8- subset deplete and degranulated around the time of TB-IRIS onset. CONCLUSIONS: Reduced iNKT cell CD4+ subsets as a result of HIV-1 infection may skew iNKT cell functionality towards cytotoxicity. Increased CD4- cytotoxic iNKT cells may contribute to immunopathology in TB-IRIS

    ATR based infrared spectroscopy for the diagnosis of neonatal respiratory distress syndrome

    Get PDF
    Optical spectroscopy offers a potential non-invasive, label free and rapid method to assist clinicians to diagnose diseases for which biomarkers are known. Neonatal respiratory distress syndrome (nRDS) diagnosis in preterm infants is known to be correlated with the lecithin/sphingomyelin ratio (LS ratio) in gastric aspirates, with a ratio less than 2.2 indicating that surfactant replacement therapy is needed. Currently no widespread method exists that can give clinically relevant answers in less than 2 hours from the point of sample collection as it is difficult to identify those who could benefit from prompt surfactant treatment. Various LS ratios were generated using pure dipalmitoylphosphatidylcholine (DPPC) and sphingomyelin (SM) dissolved in dichloromethane and infrared spectra generated using Attenuated Total Reflection (ATR) assisted Fourier Transform InfraRed spectrometry (FTIR). Subsequent analysis obtained the LS ratio using the spectra alone. Further, we demonstrate the application of principal component regression (PCR) and partial least squares (PLS) fits to measured spectra to assist in the determination of the LS ratio using a model trained with multiple runs of the different batches of the same concentration

    Prediction of Neonatal Respiratory Distress Biomarker Concentration by Application of Machine Learning to Mid-Infrared Spectra

    Get PDF
    The authors of this study developed the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR–FTIR) combined with machine learning as a point-of-care (POC) diagnostic platform, considering neonatal respiratory distress syndrome (nRDS), for which no POC currently exists, as an example. nRDS can be diagnosed by a ratio of less than 2.2 of two nRDS biomarkers, lecithin and sphingomyelin (L/S ratio), and in this study, ATR–FTIR spectra were recorded from L/S ratios of between 1.0 and 3.4, which were generated using purified reagents. The calibration of principal component (PCR) and partial least squares (PLSR) regression models was performed using 155 raw baselined and second derivative spectra prior to predicting the concentration of a further 104 spectra. A three-factor PLSR model of second derivative spectra best predicted L/S ratios across the full range (R2: 0.967; MSE: 0.014). The L/S ratios from 1.0 to 3.4 were predicted with a prediction interval of +0.29, −0.37 when using a second derivative spectra PLSR model and had a mean prediction interval of +0.26, −0.34 around the L/S 2.2 region. These results support the validity of combining ATR–FTIR with machine learning to develop a point-of-care device for detecting and quantifying any biomarker with an interpretable mid-infrared spectrum

    Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in NDUFB11

    Get PDF
    Variants in NDUFB11, which encodes a structural component of complex I of the mitochondrial respiratory chain (MRC), were recently independently reported to cause histiocytoid cardiomyopathy (histiocytoid CM) and microphthalmia with linear skin defects syndrome (MLS syndrome). Here we report an additional case of histiocytoid CM, which carries a de novo nonsense variant in NDUFB11 (ENST00000276062.8: c.262C > T; p.[Arg88*]) identified using whole-exome sequencing (WES) of a family trio. An identical variant has been previously reported in association with MLS syndrome. The case we describe here lacked the diagnostic features of MLS syndrome, but a detailed clinical comparison of the two cases revealed significant phenotypic overlap. Heterozygous variants in HCCS (which encodes an important mitochondrially targeted protein) and COX7B, which, like NDUFB11, encodes a protein of the MRC, have also previously been identified in MLS syndrome including a case with features of both MLS syndrome and histiocytoid CM. However, a systematic review of WES data from previously published histiocytoid CM cases, alongside four additional cases presented here for the first time, did not identify any variants in these genes. We conclude that NDUFB11 variants play a role in the pathogenesis of both histiocytoid CM and MLS and that these disorders are allelic (genetically related)

    Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles

    Get PDF
    Objectives: Magnetic resonance imaging (MRI) and dual-energy x-ray absorptiometry (DXA) were used to examine the thigh lean mass in young and old men and women. Methods: A whole-body DXA scan was used to estimate thigh lean mass in young (20 men; 22.4±3.1y; 18 women; 22.1±2.0y) and older adults (25 men; 72.3±4.9y; 28 women; 72.0±4.5y). Thigh lean mass deter-mined with a thigh scan on the DXA or full thigh MRI scans were compared. Results: Although the thigh lean mass quantified by DXA and MRI in young and older participants were correlated (R2=0.88; p<0.001) the magnitude of the differences in thigh lean mass between young and old was smaller with DXA than MRI (old vs. young men 79.5±13.1% and 73.4±11.2%; old vs. young women 88.6±11.8% and 79.4±12.3%, respectively). Detailed analysis of MRI revealed 30% smaller quadriceps muscles in the older than young individuals, while the other thigh muscles were only 18% smaller. Conclusions: DXA underestimates the age-related loss of thigh muscle mass in comparison to MRI. The quadriceps muscles were more susceptible to age-related atrophy compared with other thigh muscles

    Standards and Practices for Forecasting

    Get PDF
    One hundred and thirty-nine principles are used to summarize knowledge about forecasting. They cover formulating a problem, obtaining information about it, selecting and applying methods, evaluating methods, and using forecasts. Each principle is described along with its purpose, the conditions under which it is relevant, and the strength and sources of evidence. A checklist of principles is provided to assist in auditing the forecasting process. An audit can help one to find ways to improve the forecasting process and to avoid legal liability for poor forecasting

    Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity.

    Get PDF
    With the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity
    • …
    corecore