774 research outputs found

    Accurate molecular polarizabilities with coupled-cluster theory and machine learning

    Full text link
    The molecular polarizability describes the tendency of a molecule to deform or polarize in response to an applied electric field. As such, this quantity governs key intra- and inter-molecular interactions such as induction and dispersion, plays a key role in determining the spectroscopic signatures of molecules, and is an essential ingredient in polarizable force fields and other empirical models for collective interactions. Compared to other ground-state properties, an accurate and reliable prediction of the molecular polarizability is considerably more difficult as this response quantity is quite sensitive to the description of the underlying molecular electronic structure. In this work, we present state-of-the-art quantum mechanical calculations of the static dipole polarizability tensors of 7,211 small organic molecules computed using linear-response coupled-cluster singles and doubles theory (LR-CCSD). Using a symmetry-adapted machine-learning based approach, we demonstrate that it is possible to predict the molecular polarizability with LR-CCSD accuracy at a negligible computational cost. The employed model is quite robust and transferable, yielding molecular polarizabilities for a diverse set of 52 larger molecules (which includes challenging conjugated systems, carbohydrates, small drugs, amino acids, nucleobases, and hydrocarbon isomers) at an accuracy that exceeds that of hybrid density functional theory (DFT). The atom-centered decomposition implicit in our machine-learning approach offers some insight into the shortcomings of DFT in the prediction of this fundamental quantity of interest

    Will systems biology offer new holistic paradigms to life sciences?

    Get PDF
    A biological system, like any complex system, blends stochastic and deterministic features, displaying properties of both. In a certain sense, this blend is exactly what we perceive as the “essence of complexity” given we tend to consider as non-complex both an ideal gas (fully stochastic and understandable at the statistical level in the thermodynamic limit of a huge number of particles) and a frictionless pendulum (fully deterministic relative to its motion). In this commentary we make the statement that systems biology will have a relevant impact on nowadays biology if (and only if) will be able to capture the essential character of this blend that in our opinion is the generation of globally ordered collective modes supported by locally stochastic atomisms

    The plight of the sense-making ape

    Get PDF
    This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception

    The PPAR-gamma agonist pioglitazone protects cortical neurons from inflammatory mediators via improvement in peroxisomal function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation is known to play a pivotal role in mediating neuronal damage and axonal injury in a variety of neurodegenerative disorders. Among the range of inflammatory mediators, nitric oxide and hydrogen peroxide are potent neurotoxic agents. Recent evidence has suggested that oligodendrocyte peroxisomes may play an important role in protecting neurons from inflammatory damage.</p> <p>Methods</p> <p>To assess the influence of peroxisomal activation on nitric oxide mediated neurotoxicity, we investigated the effects of the peroxisomal proliferator activated receptor (PPAR) gamma agonist, pioglitazone in primary cortical neurons that were either exposed to a nitric oxide donor or co-cultured with activated microglia.</p> <p>Results</p> <p>Pioglitazone protected neurons and axons against both nitric-oxide donor-induced and microglia-derived nitric oxide-induced toxicity. Moreover, cortical neurons treated with this compound showed a significant increase in the protein and gene expression of PPAR-gamma, which was associated with a concomitant increase in the enzymatic activity of catalase. In addition, the protection of neurons and axons against hydrogen peroxide-induced toxicity afforded by pioglitazone appeared to be dependent on catalase.</p> <p>Conclusions</p> <p>Collectively, these observations provide evidence that modulation of PPAR-gamma activity and peroxisomal function by pioglitazone attenuates both NO and hydrogen peroxide-mediated neuronal and axonal damage suggesting a new therapeutic approach to protect against neurodegenerative changes associated with neuroinflammation.</p

    Systemic proteasome inhibition triggers neurodegeneration in a transgenic mouse model expressing human α-synuclein under oligodendrocyte promoter: implications for multiple system atrophy

    Get PDF
    Multiple system atrophy (MSA) is a progressive late onset neurodegenerative α-synucleinopathy with unclear pathogenesis. Recent genetic and pathological studies support a central role of α-synuclein (αSYN) in MSA pathogenesis. Oligodendroglial cytoplasmic inclusions of fibrillar αSYN and dysfunction of the ubiquitin–proteasome system are suggestive of proteolytic stress in this disorder. To address the possible pathogenic role of oligodendroglial αSYN accumulation and proteolytic failure in MSA we applied systemic proteasome inhibition (PSI) in transgenic mice with oligodendroglial human αSYN expression and determined the presence of MSA-like neurodegeneration in this model as compared to wild-type mice. PSI induced open field motor disability in transgenic αSYN mice but not in wild-type mice. The motor phenotype corresponded to progressive and selective neuronal loss in the striatonigral and olivopontocerebellar systems of PSI-treated transgenic αSYN mice. In contrast no neurodegeneration was detected in PSI-treated wild-type controls. PSI treatment of transgenic αSYN mice was associated with significant ultrastructural alterations including accumulation of fibrillar human αSYN in the cytoplasm of oligodendroglia, which resulted in myelin disruption and demyelination characterized by increased g-ratio. The oligodendroglial and myelin pathology was accompanied by axonal degeneration evidenced by signs of mitochondrial stress and dysfunctional axonal transport in the affected neurites. In summary, we provide new evidence supporting a primary role of proteolytic failure and suggesting a neurodegenerative pathomechanism related to disturbed oligodendroglial/myelin trophic support in the pathogenesis of MSA
    • 

    corecore